The isolation and partial characterization of the serum lipoproteins and apolipoproteins of the rainbow trout. (1/15636)

1. VLD (very-low-density), LD (low-density) and HD (high-density) lipoproteins were isolated from the serum of trout (Salmo gairdneri Richardson). 2. Each lipoprotein class resembled that of the human in immunological reactivity, electrophoretic behaviour and appearance in the electron microscope. Trout LD lipoprotein, however, was of greater density than human LD lipoprotein. 3. The trout lipoproteins have lipid compositions which are similar to those of the corresponding human components, except for their high contents of long-chain unsaturated fatty acids. 4. HD and LD lipoproteins were immunologically non-identical, whereas LD lipoproteins possessed antigenic determinants in common with VLD lipoproteins. 5. VLD and HD lipoproteins each contained at least seven different apoproteins, whereas LD liprotein was composed largely of a single apoprotein which resembled human apolipoprotein B. 6. At least one, and possibly three, apoprotein of trout HD lipoprotein showed features which resemble human apoprotein A-1.7. The broad similarity between the trout and human lipoprotein systems suggests that both arose from common ancestral genes early in evolutionary history.  (+info)

Fish oil feeding delays influenza virus clearance and impairs production of interferon-gamma and virus-specific immunoglobulin A in the lungs of mice. (2/15636)

Ingestion of fish oil can suppress the inflammatory response to injury and may impair host resistance to infection. To investigate the effect of a diet containing fish oil on immunity to viral infection, 148 BALB/c mice were fed diets containing 3 g/100 g of sunflower oil with either 17 g/100 g of fish oil or beef tallow for 14 d before intranasal challenge with live influenza virus. At d 1 and d 5 after infection, the mice fed fish oil had higher lung viral load and lower body weight (P < 0.05). In addition to the greater viral load and weight loss at d 5 after infection, the fish oil group consumed less food (P < 0.05) while the beef tallow group was clearing the virus, had regained their preinfection weights and was returning to their preinfection food consumption. The fish oil group had impaired production of lung interferon-gamma (IFN-gamma), serum immunoglobulin (Ig) G and lung IgA-specific antibodies (all P < 0. 05) although lung IFN-alpha/beta and the relative proportions of bronchial lymph node CD4+ and CD8+ T lymphocytes did not differ between groups after infection. The present study demonstrates a delay in virus clearance in mice fed fish oil associated with reduced IFN-gamma and antibody production and a greater weight loss and suppression of appetite following influenza virus infection. However, differences observed during the course of infection did not affect the ultimate outcome as both groups cleared the virus and returned to preinfection food consumption and body weight by d 7.  (+info)

Enhanced myocardial glucose use in patients with a deficiency in long-chain fatty acid transport (CD36 deficiency). (3/15636)

CD36 is a multifunctional, 88 kDa glycoprotein that is expressed on platelets and monocytes/macrophages. CD36 also has high homology with the long-chain fatty acid (LFA) transporter in the myocardium. Although platelet and monocyte CD36 levels can indicate a CD36 deficiency, they cannot predict specific clinical manifestations in the myocardium of a given person. We examined the hypothesis that a deficiency in LFA transport augments myocardial glucose uptake in patients with a type I CD36 deficiency. METHODS: Seven fasting patients with a type I CD36 deficiency and 9 controls were assessed by cardiac radionuclide imaging using beta-methyl-p-iodophenyl-pentadecanoic acid (BMIPP) as a LFA tracer and by PET with 18F-fluorodeoxyglucose (FDG). RESULTS: None of the patients with a CD36 deficiency showed myocardial uptake of BMIPP. The percentage dose uptake of BMIPP in these subjects was significantly lower than that in normal controls (1.31+/-0.24 versus 2.90+/-0.2; P < 0.005). PET studies revealed that myocardial FDG accumulation was substantially increased in patients with a CD36 deficiency. Quantitative analysis showed that the percentage dose uptake of FDG in patients with a CD36 deficiency was significantly higher than that in normal controls (1.28+/-0.35 versus 0.43+/-0.22; P< 0.01). CONCLUSION: CD36 functions as a major myocardial LFA transporter and its absence may cause a compensatory upregulation of myocardial glucose uptake.  (+info)

S-myristoylation of a glycosylphosphatidylinositol-specific phospholipase C in Trypanosoma brucei. (4/15636)

Covalent modification with lipid can target cytosolic proteins to biological membranes. With intrinsic membrane proteins, the role of acylation can be elusive. Herein, we describe covalent lipid modification of an integral membrane glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) from the kinetoplastid Trypanosoma brucei. Myristic acid was detected on cysteine residue(s) (i.e. thiomyristoylation). Thiomyristoylation occurred both co- and post-translationally. Acylated GPI-PLC was active against variant surface glycoprotein (VSG). The half-life of fatty acid on GPI-PLC was 45 min, signifying the dynamic nature of the modification. Deacylation in vitro decreased activity of GPI-PLC 18-30-fold. Thioacylation, from kinetic analysis, activated GPI-PLC by accelerating the conversion of a GPI-PLC.VSG complex to product. Reversible thioacylation is a novel mechanism for regulating the activity of a phospholipase C.  (+info)

Separation of molecular species of glucosylceramide by high performance liquid chromatography of their benzoyl derivatives. (5/15636)

The method of separation of glucosylceramide by HPLC was reported. Glucosylceramide was perbenzoylated and separated on a packed muBondapack C18 column, using methanol as eluting solvent. The pattern obtained by HPLC closely resembled that obtained by GLC of the TMS-glucosylceramide, and reflected the molecular species of fatty acid components. This method is reproducible, and sensitive as GLC. This method also can be used for analysis of higher glycolipids.  (+info)

Gangliosides of human kidney. (6/15636)

Five gangliosides isolated from human kidney have been characterized. The two main fractions were shown to be typical extraneural gangliosides in having lactose as their neutral carbohydrate moiety. Their structures were identified as: AcNeu(alpha2-3)Gal(beta1-4)Glc(beta1-1)Cer and AcNeu(alpha2-8)AcNeu(alpha2-3)Gal(beta1-4)Glc(beta1-1)Cer. The two main hexosamine-containing gangliosides are structurally related to human blood group substances of glycosphingolipid nature. The following structures are postulated: AcNeu(alpha2-3)Gal(beta1-4)GlcNAc(beta1-3)Gal(beta1-4)Glc(beta1-1)Cer and AcNeu(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-3)Gal(beta1-4)Glc(beta1-1) Cer. The third hexosamine-containing ganglioside belongs to a different series of glycolipids and was shown to have the structure of a major ganglioside of human brain: AcNeu(alpha2-3)Gal(beta1-3)GalNAc(beta1-4)[AcNeu(alpha2-3)]Gal(beta1-4)Glc(beta1- 1)Cer. The fatty acid structure of different gangliosides was shown to resemble that of neutral glycolipids of human kidney with the nonhydroxy acids C16:0, C22:0, and C24:0 as major components.  (+info)

Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. (7/15636)

A new halophilic sulfate-reducing bacterium, strain GSL-But2T, was isolated from surface sediment of the Southern arm of the Great Salt Lake, UT, USA. The organism grew with a number of straight-chain fatty acids (C4-C16), 2-methylbutyrate, L-alanine and pyruvate as electron donors. Butyrate was oxidized incompletely to acetate. Sulfate, but not sulfite or thiosulfate, served as an electron acceptor. Growth was observed between 2 and 19% (w/v) NaCl with an optimum at 4-5% (w/v) NaCl. The optimal temperature and pH for growth were around 34 degrees C and pH 6.5-7.3, respectively. The generation time under optimal conditions in defined medium was around 28 h, compared to 20 h in complex medium containing yeast extract. The G+C content was 35.0 mol%. 16S rRNA gene sequence analysis revealed that strain GSL-But2T belongs to the family Desulfobacteriaceae within the delta-subclass of the Proteobacteria and suggested that strain GSL-But2T represents a member of a new genus. The name Desulfocella halophila gen. nov., sp. nov. is proposed for this organism. The type strain of D. halophila is strain GSL-But2T (= DSM 11763T = ATCC 700426T).  (+info)

Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. (8/15636)

Strain 130ZT was isolated from the bovine rumen. It is a facultatively anaerobic, pleomorphic, Gram-negative rod. It exhibits a 'Morse code' form of morphology, which is characteristic of the genus Actinobacillus. Strain 130ZT is a capnophilic, osmotolerant succinogen that utilizes a broad range of sugars. It accumulates high concentrations of succinic acid (> 70 g l-1). Strain 130ZT is positive for catalase, oxidase, alkaline phosphatase and beta-galactosidase, but does not produce indole or urease. Acid but no gas is produced from D-glucose and D-fructose. 16S rRNA sequence analysis places strain 130ZT within the family Pasteurellaceae; the most closely related members of the family Pasteurellaceae have 16S rRNA similarities of 95.5% or less with strain 130ZT. Strain 130ZT was compared with Actinobacillus lignieresii and the related Bisgaard Taxa 6 and 10. Based upon morphological and biochemical properties, strain 130ZT is most similar to members of the genus Actinobacillus within the family Pasteurellaceae. It is proposed that strain 130ZT be classified as a new species, Actinobacillus succinogenes. The type strain of Actinobacillus succinogenes sp. nov. is ATCC 55618T.  (+info)