Regions 301-303 and 333-339 in the catalytic domain of blood coagulation factor IX are factor VIII-interactive sites involved in stimulation of enzyme activity. (1/206)

The contribution of the Factor IX catalytic domain to Factor VIIIa binding has been evaluated by functional analysis of Factor IX variants with substitutions in alpha-helix region 333-339 and region 301-303. These regions were found to play a prominent role in Factor VIIIa-dependent stimulation of Factor X activation, but do not contribute to the high-affinity interaction with Factor VIIIa light chain. We propose that complex assembly between Factor IXa and Factor VIIIa involves multiple interactive sites that are located on different domains of these proteins.  (+info)

Cleavage of factor V at Arg 506 by activated protein C and the expression of anticoagulant activity of factor V. (2/206)

Activated protein C (APC) inhibits coagulation by cleaving and inactivating procoagulant factor Va (FVa) and factor VIIIa (FVIIIa). FV, in addition to being the precursor of FVa, has anticoagulant properties; functioning in synergy with protein S as a cofactor of APC in the inhibition of the FVIIIa-factor IXa (FIXa) complex. FV:Q506 isolated from an individual homozygous for APC-resistance is less efficient as an APC-cofactor than normal FV (FV:R506). To investigate the importance of the three APC cleavage sites in FV (Arg-306, Arg-506, and Arg-679) for expression of its APC-cofactor activity, four recombinant FV mutants (FV:Q306, FV:Q306/Q506, FV:Q506, and FV:Q679) were tested. FV mutants with Gln (Q) at position 506 instead of Arg (R) were found to be poor APC-cofactors, whereas Arg to Gln mutations at positions 306 or 679 had no negative effect on the APC-cofactor activity of FV. The loss of APC-cofactor activity as a result of the Arg-506 to Gln mutation suggested that APC-cleavage at Arg-506 in FV is important for the ability of FV to function as an APC-cofactor. Using Western blotting, it was shown that both wild-type FV and mutant FV was cleaved by APC during the FVIIIa inhibition. At optimum concentrations of wild-type FV (11 nmol/L) and protein S (100 nmol/L), FVIIIa was found to be highly sensitive to APC with maximum inhibition occurring at less than 1 nmol/L APC. FV:Q506 was inactive as an APC-cofactor at APC-concentrations +info)

The A1 and A2 subunits of factor VIIIa synergistically stimulate factor IXa catalytic activity. (3/206)

Factor VIIIa, the protein cofactor for factor IXa, is comprised of A1, A2, and A3-C1-C2 subunits. Recently, we showed that isolated A2 subunit enhanced the kcat for factor IXa-catalyzed activation of factor X by approximately 100-fold ( approximately 1 min-1), whereas isolated A1 or A3-C1-C2 subunits showed no effect on this rate (Fay, P. J., and Koshibu, K. J. (1998) J. Biol. Chem. 273, 19049-19054). However, A1 subunit increased the A2-dependent stimulation by approximately 10-fold. The Km for factor X in the presence of A2 subunit was unaffected by A1 subunit, whereas the kcat observed in the presence of saturating A1 and A2 subunits ( approximately 15 min-1) represented 5-10% of the value observed for native factor VIIIa (approximately 200 min-1). An anti-A1 subunit antibody that blocks the association of A2 eliminated the A1-dependent contribution to factor IXa activity. Inclusion of both A1 and A2 subunits resulted in greater increases in the fluorescence anisotropy of fluorescein-Phe-Phe-Arg factor IXa than that observed for A2 subunit alone and approached values obtained with factor VIIIa. These results indicate that A1 subunit alters the A2 subunit-dependent modulation of the active site of factor IXa to synergistically increase cofactor activity, yielding an overall increase in kcat of over 1000-fold compared with factor IXa alone.  (+info)

Protease and EGF1 domains of factor IXa play distinct roles in binding to factor VIIIa. Importance of helix 330 (helix 162 in chymotrypsin) of protease domain of factor IXa in its interaction with factor VIIIa. (4/206)

Previous studies revealed that cleavage at Arg-318-Ser-319 in the protease domain autolysis loop of factor IXa results in its diminished binding to factor VIIIa. Now, we have investigated the importance of adjacent surface-exposed helix 330-338 (162-170 in chymotrypsin numbering) of IXa in its interaction with VIIIa. IXWT, eight point mutants mostly based on hemophilia B patients, and a replacement mutant (IXhelixVII in which helix 330-338 is replaced by that of factor VII) were expressed, purified, and characterized. Each mutant was activated normally by VIIa-tissue factor-Ca2+ or XIa-Ca2+. However, in both the presence and absence of phospholipid, interaction of each activated mutant with VIIIa was impaired. The role of IXa EGF1 domain in binding to VIIIa was also examined. Two mutants (IXQ50P and IXPCEGF1, in which EGF1 domain is replaced by that of protein C) were used. Strikingly, interactions of the activated EGF1 mutants with VIIIa were impaired only in the presence of phospholipid. We conclude that helix 330 in IXa provides a critical binding site for VIIIa and that the EGF1 domain in this context primarily serves to correctly position the protease domain above the phospholipid surface for optimal interaction with VIIIa.  (+info)

Targeted inhibition of intrinsic coagulation limits cerebral injury in stroke without increasing intracerebral hemorrhage. (5/206)

Agents that restore vascular patency in stroke also increase the risk of intracerebral hemorrhage (ICH). As Factor IXa is a key intermediary in the intrinsic pathway of coagulation, targeted inhibition of Factor IXa-dependent coagulation might inhibit microvascular thrombosis in stroke without impairing extrinsic hemostatic mechanisms that limit ICH. A competitive inhibitor of native Factor IXa for assembly into the intrinsic Factor X activation complex, Factor IXai, was prepared by covalent modification of the Factor IXa active site. In a modified cephalin clotting time assay, in vivo administration of Factor IXai caused a dose-dependent increase in time to clot formation (3.6-fold increase at the 300 micrograms/kg dose compared with vehicle-treated control animals, P < 0.05). Mice given Factor IXai and subjected to middle cerebral artery occlusion and reperfusion demonstrated reduced microvascular fibrin accumulation by immunoblotting and immunostaining, reduced 111In-labeled platelet deposition (42% decrease, P < 0.05), increased cerebral perfusion (2.6-fold increase in ipsilateral blood flow by laser doppler, P < 0.05), and smaller cerebral infarcts than vehicle-treated controls (70% reduction, P < 0.05) based on triphenyl tetrazolium chloride staining of serial cerebral sections. At therapeutically effective doses, Factor IXai was not associated with increased ICH, as opposed to tissue plasminogen activator (tPA) or heparin, both of which significantly increased ICH. Factor IXai was cerebroprotective even when given after the onset of stroke, indicating that microvascular thrombosis continues to evolve (and may be inhibited) even after primary occlusion of a major cerebrovascular tributary.  (+info)

Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding. (6/206)

BACKGROUND: Among the S1 family of serine proteinases, the blood coagulation factor IXa (fIXa) is uniquely inefficient against synthetic peptide substrates. Mutagenesis studies show that a loop of residues at the S2-S4 substrate-binding cleft (the 99-loop) contributes to the low efficiency. The crystal structure of porcine fIXa in complex with the inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK) was unable to directly clarify the role of the 99-loop, as the doubly covalent inhibitor induced an active conformation of fIXa. RESULTS: The crystal structure of a recombinant two-domain construct of human fIXa in complex with p-aminobenzamidine shows that the Tyr99 sidechain adopts an atypical conformation in the absence of substrate interactions. In this conformation, the hydroxyl group occupies the volume corresponding to the mainchain of a canonically bound substrate P2 residue. To accommodate substrate binding, Tyr99 must adopt a higher energy conformation that creates the S2 pocket and restricts the S4 pocket, as in fIXa-PPACK. The energy cost may contribute significantly to the poor K(M) values of fIXa for chromogenic substrates. In homologs, such as factor Xa and tissue plasminogen activator, the different conformation of the 99-loop leaves Tyr99 in low-energy conformations in both bound and unbound states. CONCLUSIONS: Molecular recognition of substrates by fIXa seems to be determined by the action of the 99-loop on Tyr99. This is in contrast to other coagulation enzymes where, in general, the chemical nature of residue 99 determines molecular recognition in S2 and S3-S4. This dominant role on substrate interaction suggests that the 99-loop may be rearranged in the physiological fX activation complex of fIXa, fVIIIa, and fX.  (+info)

Surface loop 199-204 in blood coagulation factor IX is a cofactor-dependent site involved in macromolecular substrate interaction. (7/206)

In factor IX residues 199-204 encompass one of six surface loops bordering its substrate-binding groove. To investigate the contribution of this loop to human factor IX function, a series of chimeric factor IX variants was constructed, in which residues 199-204 were replaced by the corresponding sequence of factor VII, factor X, or prothrombin. The immunopurified and activated chimeras were indistinguishable from normal factor IXa in hydrolyzing a small synthetic substrate, indicating that this region is not involved in the interaction with substrate residues on the N-terminal side of the scissile bond. In contrast, replacement of loop 199-204 resulted in a 5-25-fold reduction in reactivity toward the macromolecular substrate factor X. This reduction was due to a combination of increased K(m) and reduced k(cat). In the presence of factor VIIIa the impaired reactivity toward factor X was largely restored for all factor IXa variants, resulting in a more pronounced stimulation by factor VIIIa compared with normal factor IXa (3 to 5 x 10(4)-fold versus 5 x 10(3)-fold). Inhibition by antithrombin was only slightly affected for the factor IXa variant with the prothrombin loop sequence, whereas factor IXa variants containing the analogous residues of factor VII or factor X were virtually insensitive to antithrombin inhibition. In the presence of heparin, however, all chimeric factor IXa variants formed complexes with antithrombin. Thus the cofactors heparin and factor VIIIa have in common that they both alleviate the deleterious effects of mutations in the factor IX loop 199-204. Collectively, our data demonstrate that loop 199-204 plays an important role in the interaction of factor IXa with macromolecular substrates.  (+info)

Human inhibitor antibodies specific for the factor VIII A2 domain disrupt the interaction between the subunit and factor IXa. (8/206)

Factor VIIIa, a heterotrimer of the A1, A2, and A3-C1-C2 subunits, increases the catalytic efficiency for factor IXa-catalyzed activation of factor X. A significant fraction of naturally occurring, anti-factor VIII inhibitor antibodies reacts with the A2 domain. Utilizing the capacity for isolated A2 subunit to stimulate factor IXa activity, we show that a panel of these inhibitors block this activity. Inhibition of activity parallels the antibody potency as measured in the Bethesda assay. These antibodies also block the A2-dependent increases in fluorescence anisotropy of fluorescein-Phe-Phe-Arg factor IXa. Similar to the IgG fractions, a peptide representing the sequence of the inhibitor epitope (A2 residues 484-509) blocked the A2-dependent stimulation of factor IXa. These results indicate that antibodies possessing this specificity directly inhibit the interaction of A2 subunit with factor IXa, thus abrogating the contribution of this subunit to cofactor activity. Furthermore, these results also suggest that factor VIII residues 484-509 contribute to a factor IXa-interactive site.  (+info)