Human T cells express the C5a receptor and are chemoattracted to C5a. (9/2313)

The anaphylatoxin C5a is a potent mediator of inflammation that exerts a broad range of activity on cells of the myeloid lineage. In this study, we present the first evidence that human T cells express the C5a receptor (C5aR) and are chemotactic to C5a. Using FACS analysis, we found that the C5aR was expressed at a low basal level on unstimulated T cells and was strikingly up-regulated upon PHA stimulation in a time- and dose-dependent manner. CD3+ sorted T cells as well as Jurkat T cells were shown to express C5aR mRNA as assessed by RT-PCR. Moreover, semiquantitative RT-PCR analysis demonstrated that C5aR mRNA was down-regulated in purified T cells upon long-term PHA stimulation. To demonstrate that C5a was biologically active on T cells, we investigated the chemotactic activity of C5a and observed that purified CD3+ T cells are chemotactic to C5a at nanomolar concentrations. Finally, using a combination of in situ hybridization and immunohistochemistry, we showed that the T cells infiltrating the central nervous system during experimental allergic encephalomyelitis express the C5aR mRNA. In summary, these results suggest that C5a exerts direct effects on T cells and could be involved in the trafficking of T cells under physiological and pathological conditions, including inflammatory diseases of the central nervous system.  (+info)

CD28 costimulation is crucial for the development of spontaneous autoimmune encephalomyelitis. (10/2313)

Multiple sclerosis (MS) is a severe central nervous system disease. Experimental autoimmune encephalomyelitis (EAE) mimics MS in mice. We report that spontaneous development of EAE in RAG-1-deficient mice transgenic for a myelin basic protein (MBP)-specific TCR (TgMBP+/RAG-1-/-) requires expression of the T cell costimulatory molecule CD28. Surprisingly, T cells from CD28-/-TgMBP+/RAG-1-/- mice proliferate and produce IL-2 in response to MBP1-17 peptide in vitro, excluding clonal anergy as the mechanism of CD28-regulated pathogenesis. Proliferation of autoaggressive T cells was dependent on the concentration of the MBP peptide, as was the development of MBP-induced EAE in CD28-deficient PL/J mice. These results provide the first genetic evidence that CD28 costimulation is crucial for MBP-specific T cell activation in vivo and the initiation of spontaneous EAE.  (+info)

Dual role for Fas ligand in the initiation of and recovery from experimental allergic encephalomyelitis. (11/2313)

We have previously demonstrated a role for Fas and Fas ligand (FasL) in the pathogenesis of experimental allergic encephalomyelitis (EAE). However, using an active induction paradigm we could not distinguish between FasL expressed on activated CD4(+) T cells from that expressed on other inflammatory or resident central nervous system (CNS) cells. To address this issue, we have conducted reciprocal adoptive transfer experiments of nontransgenic or myelin basic protein-specific T cell receptor transgenic wild-type, lpr, or gld lymphocytes into congenic wild-type, lpr, and gld hosts. We found that FasL expressed on donor cells is important for the development of EAE, as FasL-deficient lymphocytes transfer attenuated disease. Furthermore, Fas expressed in the recipient animals is important for the progression of EAE, as clinical signs of disease in lpr recipients were dramatically attenuated after transfer of either wild-type or lpr T cells. Surprisingly, these experiments also identified CNS cells as a source of functional FasL. Host-derived FasL appears to be especially important in the recovery from EAE, as many gld recipients of wild-type lymphocytes develop prolonged clinical signs of disease. Thus it appears that FasL plays distinct roles in EAE during the initiation of and recovery from disease.  (+info)

Microbial epitopes act as altered peptide ligands to prevent experimental autoimmune encephalomyelitis. (12/2313)

Molecular mimicry refers to structural homologies between a self-protein and a microbial protein. A major epitope of myelin basic protein (MBP), p87-99 (VHFFKNIVTPRTP), induces experimental autoimmune encephalomyelitis (EAE). VHFFK contains the major residues for binding of this self-molecule to T cell receptor (TCR) and to the major histocompatibility complex. Peptides from papilloma virus strains containing the motif VHFFK induce EAE. A peptide from human papilloma virus type 40 (HPV 40) containing VHFFR, and one from HPV 32 containing VHFFH, prevented EAE. A sequence from Bacillus subtilis (RKVVTDFFKNIPQRI) also prevented EAE. T cell lines, producing IL-4 and specific for these microbial peptides, suppressed EAE. Thus, microbial peptides, differing from the core motif of the self-antigen, MBPp87-99, function as altered peptide ligands, and behave as TCR antagonists, in the modulation of autoimmune disease.  (+info)

Regulatory T cells in experimental allergic encephalomyelitis. I. Frequency and specificity analysis in normal and immune rats of a T cell subset that inhibits disease. (13/2313)

We have shown previously that administration of myelin basic protein (MBP)-reactive T cells to naive Lewis rats induces not only autoimmune encephalomyelitis (EAE) but also a near total resistance to subsequent disease. By isolating the effector cells that are responsible for the resistance, we demonstrated that disease protection paralleled with increased numbers of a CD8+ regulatory T cell (RTC) subset and that co-injection of this RTC subset with encephalitogenic T cells aborted the pathogenic activity of the latter cells. Here, we show that a radio-sensitive splenic population of RTC also exists in naive rats that can be recruited and activated to inhibit the onset of secondary episodes of adoptive EAE. In co-transfer experiments, this protective RTC subpopulation can be isolated to neutralize the pathogenic activity of stimulatory MBP-reactive T cells in vivo. We show that the frequency of RTC with specificity for MBP-reactive T cells in naive rats is two orders of magnitude higher than the frequency of MBP-specific precursors, the activity of RTC increases substantially with age and RTC frequencies increase as a consequence of immunization with MBP-reactive cells lines. In specificity studies, we show that RTC isolated from naive rats and RTC from animals primed with one MBP-reactive cell line show cross-reactive responses to a variety of different MBP-reactive T cell lines. However, following repeated stimulation with a given MBP line, these RTC display a more limited, clonotypic response to the selecting line and assume a uniform CD8 phenotype. Finally, functional studies with RTC indicate that proliferative and lytic specificities do not necessarily correlate and that activated rat RTC are especially lytic for a Fas-sensitive murine cell line.  (+info)

Regulation of inflammatory responses by oncostatin M. (14/2313)

Oncostatin M (OM) is a pleiotropic cytokine produced late in the activation cycle of T cells and macrophages. In vitro it shares properties with related proteins of the IL-6 family of cytokines; however, its in vivo properties and physiological function are as yet ill defined. We show that administration of OM inhibited bacterial LPS-induced production of TNF-alpha and lethality in a dose-dependent manner. Consistent with these findings, OM potently suppressed inflammation and tissue destruction in murine models of rheumatoid arthritis and multiple sclerosis. T cell function and Ab production were not impaired by OM treatment. Taken together these data indicate the activities of this cytokine in vivo are antiinflammatory without concordant immunosuppression.  (+info)

Decreased IL-12 production underlies the decreased ability of male lymph node cells to induce experimental autoimmune encephalomyelitis. (15/2313)

Myelin basic protein (MBP)-specific T lymphocytes from male SJL mice were shown to be less encephalitogenic than MBP-specific T lymphocytes from females. Mechanisms underlying this gender difference in the induction phase of EAE were examined. Following immunization with MBP, draining lymph nodes contained fewer cells, and Ag-specific proliferative responses were decreased in males as compared with females. These gender differences in the proliferative response were not unique to MBP-specific responses since they were also observed after immunization with hen eggwhite lysozyme. Short-term MBP-specific T cell lines derived from females and males mapped with identical specificity, indicating no defect in the ability of male APCs to process Ag. Interestingly, IL-12 and IFN-gamma production was decreased following Ag-specific stimulation of draining lymph node cells (LNC) from males as compared with females, but IL-10 and IL-4 were no different. While male-derived LNCs were less encephalitogenic than female derived LNCs, cotransfer and coculture of male LNCs with female LNCs demonstrated that male LNCs were not immunosuppressive. Administration of IL-12 to LNCs from male mice enhanced encephalitogenicity. These data indicate that deficient endogenous IL-12 production within draining LNCs of male SJL mice is central to gender differences in the induction phase of experimental autoimmune encephalomyelitis.  (+info)

Differential presentation of an altered peptide within fetal central and peripheral organs supports an avidity model for thymic T cell development and implies a peripheral readjustment for activation. (16/2313)

Altered self peptides may drive T cell development by providing avidity of interactions low enough to potentiate positive selection but not powerful enough to trigger programmed cell death. Since the peptide repertoire in both central and peripheral organs is nearly the same, interactions of these peptides with T cells in the thymus would have to be different from those taking place in the periphery; otherwise, T cell development and maturation would result in either autoimmunity or T cell deficiency. Herein, a self and an altered self peptide were delivered to fetuses, and their presentation as well as the consequence of such presentation on T cell development were assessed. The results indicate that the self peptide was presented in both central and peripheral fetal organs and that such presentation abolished T cell responses to both peptides during adult life. However, the altered peptide, although presented in vivo as well as in vitro by splenic cells, was unable to stimulate a specific T cell clone when the presenting cells were of thymic origin and allowed offspring to be responsive to both peptides. These findings indicate that central and peripheral organs accommodate selection and peripheral survival of T cells by promoting differential altered peptide presentation.  (+info)