Experimental autoimmune encephalomyelitis in NF-kappa B-deficient mice:roles of NF-kappa B in the activation and differentiation of autoreactive T cells. (33/2313)

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the CNS, which has long been used as an animal model for human multiple sclerosis. Development of autoimmune disease requires coordinated expression of a number of genes that are involved in the activation and effector functions of inflammatory cells. These include genes that encode costimulatory molecules, cytokines, chemokines, and adhesion molecules. Activation of these genes is regulated at the transcriptional level by several families of transcription factors. One of these is the NF-kappa B family, which is present in a variety of cell types and becomes highly activated at sites of inflammation. To test the roles of NF-kappa B in the development of autoimmune diseases, we studied EAE in mice deficient in one of the NF-kappa B isoforms, i.e., NF-kappa B1 (p50). We found that NF-kappa B1-deficient mice were significantly resistant to EAE induced by myelin oligodendrocyte glycoprotein. The resistance was primarily evidenced by a decrease in disease incidence, clinical score, and the degree of CNS inflammation. Furthermore, we established that the resistance to EAE in NF-kappa B1-deficient mice was associated with a deficiency of myelin oligodendrocyte glycoprotein-specific T cells to differentiate into either Th1- or Th2-type effector cells in vivo. These results strongly suggest that NF-kappa B1 plays crucial roles in the activation and differentiation of autoreactive T cells in vivo and that blocking NF-kappa B function can be an effective means to prevent autoimmune encephalomyelitis.  (+info)

Augmentation of natural immunity to a pro-inflammatory cytokine (TNF-alpha) by targeted DNA vaccine confers long-lasting resistance to experimental autoimmune encephalomyelitis. (34/2313)

TNF-alpha is thought to be a key pro-inflammatory cytokine in T cell-mediated autoimmune diseases, particularly in rheumatoid arthritis (RA) and multiple sclerosis (MS). Experimental autoimmune encephalomyelitis (EAE) serves as an animal model for MS. The current study observes a notable TNF-alpha-specific antibody titer generated during the course of EAE, apparently not sufficient to prevent the development of disease. Administration of TNF-alpha-naked DNA vaccine enhanced the production of TNF-alpha-specific antibody titer and conferred EAE resistance. These antibodies were found to be neutralizing in vitro and capable of inhibiting the development of disease when transferred to other EAE rats. Thus, modulation of EAE with TNF-alpha DNA vaccines enhances the regulation of natural immunity to a self pro-inflammatory cytokine and provides a tool by which the immune system is encouraged to elicit anti-self protective immunity to restrain its own harmful reactivity when such a response is needed.  (+info)

Genetic susceptibility or resistance to autoimmune encephalomyelitis in MHC congenic mice is associated with differential production of pro- and anti-inflammatory cytokines. (35/2313)

Experimental allergic encephalomyelitis (EAE) is a T(h)1-type cell-mediated autoimmune disease induced by immunization with myelin proteins and mediated by CD4(+) T cells. Although susceptibility to EAE is dependent largely on MHC background, the B10.S strain is resistant to induction of EAE despite sharing the I-A(s) MHC locus with the susceptible SJL strain. Furthermore, NOD mice which spontaneously develop diabetes are susceptible to EAE induction with myelin oligodendrocyte glycoprotein (MOG) 35-55, whereas a MHC congenic strain, III, which also expresses I-A(g7) MHC haplotype does not develop diabetes and is also resistant to EAE induction. We induced EAE in these four strains of mice with MOG peptides 92-106 (for I-A(s) strains) and 35-55 (for I-A(g7) strains) in complete Freund's adjuvant. In the susceptible strains (SJL and NOD) in vitro, there are high levels of IFN-gamma production, whereas the resistant strains (B10.S or III) secreted primarily IL-4/IL-10 and transforming growth factor (TGF)-beta, and had decreased levels of IFN-gamma. When brains from susceptible and resistant mice were examined by immunohistochemical methods for cytokine expression, the brains from resistant mice showed fewer infiltrates which predominantly expressed IL-4 and IL-10 and/or TGF-beta. Brains from NOD and SJL with EAE showed mainly IL-2 and IFN-gamma positive cells. Thus, resistance to MOG induced EAE in B10.S and III mouse strains is related to non-MHC genes and is associated with an altered balance of pro- and anti-inflammatory cytokines both in lymphoid tissue and in the brain following immunization with myelin antigens.  (+info)

Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. (36/2313)

The importance of B7 costimulation in regulating T cell expansion and peripheral tolerance suggests that it may also play a significant regulatory role in the development of autoimmune disease. It is unclear whether B7 costimulation is involved only in the expansion of autoreactive T cells in the periphery, or if it is also required for effector activation of autoreactive T cells in the target organ for mediating tissue injury and propagating autoimmune disease. In this study, the role of B7-CD28 costimulation and the relative importance of B7 costimulators for the induction and effector phases of experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein (MOG) peptide were examined. Wild-type, B7-1/B7-2-deficient mice, or CD28-deficient C57BL/6 mice were immunized with MOG 35-55 peptide. Mice lacking both B7-1 and B7-2 or CD28 showed no or minimal clinical signs of EAE and markedly reduced inflammatory infiltrates in the brain and spinal cord. However, mice lacking either B7-1 or B7-2 alone developed clinical and pathologic EAE that was comparable to EAE in wild-type mice, indicating overlapping functions for B7-1 and B7-2. Resistance to EAE was not due to a lack of induction of T helper type 1 (Th1) cytokines, since T cells from B7-1/B7-2(-/-) mice show reduced proliferative responses, but greater interferon gamma production compared with T cells from wild-type mice. To study the role of B7 molecules in the effector phase of the disease, MOG 35-55-specific T lines were adoptively transferred into the B7-1/B7-2(-/-) and wild-type mice. Clinical and histologic EAE were markedly reduced in B7-1/B7-2(-/-) compared with wild-type recipient mice. These results demonstrate that B7 costimulation has critical roles not only in the initial activation and expansion of MOG-reactive T cells, but also in the effector phase of encephalitogenic T cell activation within the central nervous system.  (+info)

Endogenous presentation of self myelin epitopes by CNS-resident APCs in Theiler's virus-infected mice. (37/2313)

The mechanisms underlying the initiation of virus-induced autoimmune disease are not well understood. Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), a mouse model of multiple sclerosis, is initiated by TMEV-specific CD4(+) T cells targeting virally infected central nervous system-resident (CNS-resident) antigen-presenting cells (APCs), leading to chronic activation of myelin epitope-specific CD4(+) T cells via epitope spreading. Here we show that F4/80(+), I-A(s+), CD45(+) macrophages/microglia isolated from the CNS of TMEV-infected SJL mice have the ability to endogenously process and present virus epitopes at both acute and chronic stages of the disease. Relevant to the initiation of virus-induced autoimmune disease, only CNS APCs isolated from TMEV-infected mice with preexisting myelin damage, not those isolated from naive mice or mice with acute disease, were able to endogenously present a variety of proteolipid protein epitopes to specific Th1 lines. These results offer a mechanism by which localized virus-induced, T cell-mediated inflammatory myelin destruction leads to the recruitment/activation of CNS-resident APCs that can process and present endogenous self epitopes to autoantigen-specific T cells, and thus provide a mechanistic basis by which epitope spreading occurs.  (+info)

Cross-reactivity of myelin basic protein-specific T cells with multiple microbial peptides: experimental autoimmune encephalomyelitis induction in TCR transgenic mice. (38/2313)

Activation of autoreactive T cells is a crucial event in the pathogenesis of autoimmune diseases. Cross-reactivity between microbial and self Ags (molecular mimicry) is one hypothesis that could explain the activation of autoreactive T cells. We have systematically examined this hypothesis in experimental autoimmune encephalomyelitis using mice bearing exclusively myelin basic protein (MBP)-specific T cells (designated T+ alpha-). A peptide substitution analysis was performed in which each residue of the MBPAc1-11 peptide was exchanged by all 20 naturally occurring amino acids. This allowed the definition of the motif (supertope) that is recognized by the MBPAc1-11-specific T cells. The supertope was used to screen protein databases (SwissProt and TREMBL). By the search, 832 peptides of microbial origin were identified and synthesized. Of these, 61 peptides induced proliferation of the MBPAc1-11-specific transgenic T cells in vitro. Thus, the definition of a supertope by global amino acid substitution can identify multiple microbial mimic peptides that activate an encephalitogenic TCR. Peptides with only two native MBP-residues were sufficient to activate MBPAc1-11-specific T cells in vitro, and experimental autoimmune encephalomyelitis could be induced by immunizing mice with a mimic peptide with only four native MBP residues.  (+info)

Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: a role for IL-10. (39/2313)

Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-mediated, inflammatory disease with similarities to multiple sclerosis in humans. Intranasal (i.n.) administration of a myelin basic protein (MBP)-derived peptide can protect susceptible mice from EAE. The mechanisms underlying this phenomenon, however, remain unclear. To analyze the phenotypic and functional changes taking place during the induction of tolerance by peptide inhalation, we have studied the fate of CD4(+) T cells after i.n. peptide application using transgenic mice expressing a TCR specific for the N-terminal peptide (Ac1-9) of MBP. Peripheral T cell death was variably observed in TCR transgenic mice after a single i.n. administration of antigenic peptide but was transient and incomplete. Transgenic spleen cells and cervical lymph node cells responded with a cytokine burst to peptide inhalation and hyperproliferation when re-stimulated in vitro. Transfer experiments demonstrated that the duration of peptide administration required to induce tolerance depended on the precursor frequency of T cells in recipient animals. The stringency of i.n. peptide treatment was increased so as to test the efficacy of tolerance induction both in vitro and in vivo in the presence of high precursor frequencies of antigen-specific T cells. Multiple i.n. doses of peptide completely protected TCR transgenic mice from EAE induced with myelin. Such repeated peptide administration resulted in down-regulation of the capacity of antigen-specific CD4(+) T cells to proliferate or to produce IL-2, IFN-gamma and IL-4 but increased the production of IL-10. The role of IL-10 in suppression of EAE in vivo was demonstrated by neutralization of IL-10. This completely restored susceptibility to EAE in mice previously protected by i.n. peptide. Considering the immunosuppressive properties of IL-10, T cells which are resistant to apoptosis might act as regulatory cells and mediate bystander suppression.  (+info)

Age dependence of clinical and pathological manifestations of autoimmune demyelination. Implications for multiple sclerosis. (40/2313)

A prominent feature of the clinical spectrum of multiple sclerosis (MS) is its high incidence of onset in the third decade of life and the relative rarity of clinical manifestations during childhood and adolescence, features suggestive of age-related restriction of clinical expression. Experimental allergic encephalomyelitis (EAE), a model of central nervous system (CNS) autoimmune demyelination with many similarities to MS, has a uniform rapid onset and a high incidence of clinical and pathological disease in adult (mature) animals. Like MS, EAE is most commonly seen and studied in female adults. In this study, age-related resistance to clinical EAE has been examined with the adoptive transfer model of EAE in SJL mice that received myelin basic protein-sensitized cells from animals 10 days (sucklings) to 12 weeks (young adults) of age. A variable delay before expression of clinical EAE was observed between the different age groups. The preclinical period was longest in the younger (<14 days of age) animals, and shortest in animals 6 to 8 weeks old at time of transfer. Young animals initially resistant to EAE eventually expressed well-developed clinical signs by 6 to 7 weeks of age. This was followed by a remitting, relapsing clinical course. For each age at time of sensitization, increased susceptibility of females compared to males was observed. Examination of the CNS of younger animal groups during the preclinical period showed lesions of acute EAE. Older age groups developed onset of signs coincident with acute CNS lesions. This age-related resistance to clinical EAE in developing mice is reminiscent of an age-related characteristic of MS previously difficult to study in vivo. The associated subclinical CNS pathology and age-related immune functions found in young animals may be relevant to the increasing clinical expression of MS with maturation, and may allow study of factors associated with the known occasional poor correlation of CNS inflammation and demyelination and clinical changes in this disease.  (+info)