Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. (1/466)

A system has been developed for generating chimeric yellow fever/Japanese encephalitis (YF/JE) viruses from cDNA templates encoding the structural proteins prM and E of JE virus within the backbone of a molecular clone of the YF17D strain. Chimeric viruses incorporating the proteins of two JE strains, SA14-14-2 (human vaccine strain) and JE Nakayama (JE-N [virulent mouse brain-passaged strain]), were studied in cell culture and laboratory mice. The JE envelope protein (E) retained antigenic and biological properties when expressed with its prM protein together with the YF capsid; however, viable chimeric viruses incorporating the entire JE structural region (C-prM-E) could not be obtained. YF/JE(prM-E) chimeric viruses grew efficiently in cells of vertebrate or mosquito origin compared to the parental viruses. The YF/JE SA14-14-2 virus was unable to kill young adult mice by intracerebral challenge, even at doses of 10(6) PFU. In contrast, the YF/JE-N virus was neurovirulent, but the phenotype resembled parental YF virus rather than JE-N. Ten predicted amino acid differences distinguish the JE E proteins of the two chimeric viruses, therefore implicating one or more residues as virus-specific determinants of mouse neurovirulence in this chimeric system. This study indicates the feasibility of expressing protective antigens of JE virus in the context of a live, attenuated flavivirus vaccine strain (YF17D) and also establishes a genetic system for investigating the molecular basis for neurovirulence determinants encoded within the JE E protein.  (+info)

The NS5A protein of hepatitis C virus partially inhibits the antiviral activity of interferon. (2/466)

The non-structural protein 5A (NS5A) of some hepatitis C virus (HCV) isolates has been implicated in the inhibition of the antiviral activity of interferon (IFN). In the present study, the possible inhibitory effects of NS5A from two isolates of HCV subtype 1b, HCV-1bJk and M094AJk, and their chimeric form on the antiviral activity of IFN were examined. HCV-1bJk and M094AJk are categorized as IFN resistant and IFN sensitive, respectively, based on the sequences of the IFN-sensitivity determining region (ISDR). When encephalomyocarditis virus was used as a challenge virus, NS5A was shown to eliminate the antiviral activity of IFN, with inhibition being more prominent with HCV-1bJk NS5A than with M094AJk NS5A. Moreover, the inhibition was significantly weaker in cells expressing a chimeric NS5A that had a short stretch of 49 amino acids (aa 2209-2257), including the ISDR sequence, from M094AJk in the backbone of the HCV-1bJk sequence than in cells expressing the original NS5A from HCV-1bJk. These results suggest an important role for the 49 aa sequence, including the ISDR, in the inhibition of IFN-mediated antiviral activity. On the other hand, only a slight reduction of IFN antiviral activity by HCV-1bJk NS5A was observed when vesicular stomatitis virus was used as a challenge virus, and barely any reduction was observed when Japanese encephalitis virus was used. These results may reflect differential importance of each of the IFN-mediated signalling pathways in conferring resistance against different viruses.  (+info)

Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever-Japanese encephalitis virus (ChimeriVax-JE) as a live, attenuated vaccine candidate against Japanese encephalitis. (3/466)

Yellow fever (YF) 17D vaccine virus, having a 60-year history of safe and effective use, is an ideal vector to deliver heterologous genes from other medically important flaviviruses. A chimeric YF/Japanese encephalitis (JE) virus (ChimeriVax-JE virus) was constructed by insertion of the premembrane and envelope (prME) genes of an attenuated human vaccine strain (SA14-14-2) of Japanese encephalitis (JE) virus between core and nonstructural (NS) genes of a YF 17D infectious clone. The virus grew to high titers in cell cultures and was not neurovirulent for 3- to 4-week-old mice at doses /=10(3) pfu of ChimeriVax-JE virus were solidly protected against intraperitoneal challenge with a virulent JE virus. Genetic stability of the chimera was assessed by sequential passages in cell cultures or in mouse brain. All attenuating residues and the avirulent phenotype were preserved after 18 passages in cell cultures or 6 passages in mouse brains.  (+info)

The anamnestic neutralizing antibody response is critical for protection of mice from challenge following vaccination with a plasmid encoding the Japanese encephalitis virus premembrane and envelope genes. (4/466)

For Japanese encephalitis (JE), we previously reported that recombinant vaccine-induced protection from disease does not prevent challenge virus replication in mice. Moreover, DNA vaccines for JE can provide protection from high challenge doses in the absence of detectable prechallenge neutralizing antibodies. In the present study, we evaluated the role of postchallenge immune responses in determining the outcome of JE virus infection, using mice immunized with a plasmid, pcDNA3JEME, encoding the JE virus premembrane (prM) and envelope (E) coding regions. In the first experiment, 10 mice were vaccinated once (five animals) or twice (remainder) with 100 micrograms of pcDNA3JEME. All of these mice showed low (6 of 10) or undetectable (4 of 10) levels of neutralizing antibodies. Interestingly, eight of these animals showed a rapid rise in neutralizing antibody following challenge with 10,000 50% lethal doses of JE virus and survived for 21 days, whereas only one of the two remaining animals survived. No unimmunized animals exhibited a rise of neutralizing antibody or survived challenge. Levels of JE virus-specific immunoglobulin M class antibodies were elevated following challenge in half of the unimmunized mice and in the single pcDNA3JEME-immunized mouse that died. In the second experiment, JE virus-specific primary cytotoxic T-lymphocyte (CTL) activity was detected in BALB/c mice immunized once with 100 micrograms of pcDNA3JEME 4 days after challenge, indicating a strong postchallenge recall of CTLs. In the third experiment, evaluation of induction of CTLs and antibody activity by plasmids containing portions of the prM/E cassette demonstrated that induction of CTL responses alone were not sufficient to prevent death. Finally, we showed that antibody obtained from pcDNA3JEME-immunized mice 4 days following challenge could partially protect recipient mice from lethal challenge. Taken together, these results indicate that neutralizing antibody produced following challenge provides the critical protective component in pcDNA3JEME-vaccinated mice.  (+info)

Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. (5/466)

Infection with Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, may cause acute encephalitis in humans and induce severe cytopathic effects in various types of cultured cells. We observed that JEV replication rendered infected baby hamster kidney (BHK-21) cells sensitive to the translational inhibitor hygromycin B or alpha-sarcine, to which mock-infected cells were insensitive. However, little is known about whether any JEV nonstructural (NS) proteins contribute to virus-induced changes in membrane permeability. Using an inducible Escherichia coli system, we investigated which parts of JEV NS1 to NS4 are capable of modifying membrane penetrability. We found that overexpression of NS2B-NS3, the JEV protease, permeabilized bacterial cells to hygromycin B whereas NS1 expression failed to do so. When expressed separately, NS2B alone, but not NS3, was sufficient to alter bacterial membrane permeability. Similarly, expression of NS4A or NS4B also rendered bacteria susceptible to hygromycin B inhibition. Examination of the effect of NS1 to NS4 expression on bacterial growth rate showed that NS2B exhibited the greatest inhibitory capability, followed by a modest repression from NS2A and NS4A, whereas NS1, NS3, and NS4B had only trivial influence with respect to the vector control. Furthermore, when cotransfected with a reporter gene luciferase or beta-galactosidase, transient expression of NS2A, NS2B, and NS4B markedly reduced the reporter activity in BHK-21 cells. Together, our results suggest that upon JEV infection, these four small hydrophobic NS proteins have various modification effects on host cell membrane permeability, thereby contributing in part to virus-induced cytopathic effects in infected cells.  (+info)

Molecular characterization of an Indian isolate of Japanese encephalitis virus that shows an extended lag phase during growth. (6/466)

The biological properties of an Indian isolate (GP78) of Japanese encephalitis virus (JEV) were characterized in tissue-cultured cells and mice and these were compared with the JaOArS982 strain from Japan. The GP78 strain had a markedly extended lag phase during its growth in porcine stable kidney (PS) cells. There were no obvious defects in the penetration of GP78 into PS cells. However, viral RNA and protein synthesis were significantly delayed in GP78-infected PS cells. Fusion-from-within assays carried out in C6/36 cells indicated that GP78 was less fusogenic than the JaOArS982 strain of JEV. Moreover, maximum fusion in GP78-infected cells occurred at pH 5.5, whereas JaOArS982-infected cells showed maximum fusion at pH 6.0. These results suggested that there may be a lesion in the virus-cell fusion process. The GP78 strain also showed delayed growth in brains of 1-week-old BALB/c mice. Although JEV GP78 was as virulent as the JaOArS982 strain in these mice, the appearance of clinical symptoms of JEV infection was delayed by a day in mice infected with the GP78 strain and these animals showed an increased average survival time. Comparison of the nucleotide sequences of the GP78 and the JaOArS982 strains of JEV identified a number of amino acid substitutions in structural proteins. Of these, a Thr --> Met substitution at residue 76 of the envelope protein is predicted to be causally associated with the altered biology of the GP78 strain during growth.  (+info)

The epidemiology of Japanese encephalitis on Taiwan during 1966-1997. (7/466)

Japanese encephalitis (JE) is an endemic disease in Taiwan. A mass vaccination program of children against JE was first implemented in 1968. Along with general improvements in various aspects of living conditions over the years, the program has brought JE well under control. The main characteristics of JE epidemiology in Taiwan in the past 3 decades are as follows. The transmission mode remains unchanged-that is, the amplification stage of the virus in pigs is followed by a human epidemic each year. The frequency of JE incidence has dropped significantly. The incidence rate of confirmed cases was 2.05 per 100,000 in 1967, the highest in record, and merely 0.03 per 100,000 in 1997. Confirmed cases occur sporadically all over the island. The peak of the epidemic season has shifted from August in the 1960s to June since the 1980s. The age distribution of confirmed cases has shifted gradually from mainly children to adults. Vaccine efficacy for those having received more than 2 doses of the vaccine is estimated to be about 85%.  (+info)

Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. (8/466)

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is an important human pathogen. The envelope glycoprotein (Egp), a major structural antigen, is responsible for viral haemagglutination and eliciting neutralising antibodies. The three-dimensional structure of the Egp of JEV was predicted using the knowledge-based homology modeling approach and X-ray structure data of the Egp of tick-borne encephalitis virus as a template (Rey et al., 1995). In the initial stages of optimisation, a distance-dependent dielectric constant of 4r(ij) was used to simulate the solvent effect. The predicted structure was refined by solvating the protein in a 10-A layer of water by explicitly considering 4867 water molecules. Four independent structure evaluation methods report this structure to be acceptable stereochemically and geometrically. The Egp of JEV has an extended structure with seven beta-sheets, two alpha-helices, and three domains. The water-solvated structure was used to delineate conformational and sequential epitopes. These results document the importance of tertiary structure in understanding the antigenic properties of flaviviruses in general and JEV in particular. The conformational epitope prediction method could be used to identify conformational epitopes on any protein antigen with known three-dimensional structure. This is one of the largest proteins whose three-dimensional structure has been predicted using an homology modeling approach and water as a solvent.  (+info)