Experimental acid-aspiration pneumonia in the rabbit. A pathologic and morphometric study. (17/26264)

Four anesthetized rabbits given intratracheal injections of hydrochloric acid, pH 1.5, 2 ml/kg, were killed 4 h later. A fifth rabbit was an untreated control. Each lung had a few red-brown patches of compression atelectasis. Microscopically, treated lungs had a severe exudative necrotizing bronchitis, bronchiolitis, and alveolitis. There was also intra-alveolar hemorrhage and edema. Electron microscopy showed folds, projections and focal swellings of type I cells lining affected alveoli. A morphometric study showed 69% of parenchyma to be normal, 26% edematous and 5% hemorrhagic. In the airways 58% of the epithelium was damaged.  (+info)

P-selectin deficiency exacerbates experimental glomerulonephritis: a protective role for endothelial P-selectin in inflammation. (18/26264)

P-selectin is a leukocyte adhesion receptor present in endothelial cells and platelets. We examined the role of P-selectin in the autologous phase of an accelerated model of anti-glomerular basement membrane (GBM) glomerulonephritis using P-selectin-deficient mice and chimeric mice expressing P-selectin only in platelets or endothelial cells. P-selectin-deficient mice exhibited more severe glomerular damage with increased interstitial mononuclear leukocytic infiltrates, and had significantly increased proteinuria and mortality when compared to wild-type mice. P-selectin on the endothelium was predominantly responsible for protection from the exacerbated disease, because chimeric mice with endothelial P-selectin, and not mice with platelet P-selectin, showed glomerular injury similar to that in wild-type animals. Levels of soluble circulating P-selectin were increased in nephritic wild-type mice and in chimeric mice with endothelial P-selectin, but not platelet P-selectin. Levels of soluble P-selectin, which has been shown to be anti-inflammatory in vitro, were inversely associated with the severity of disease. P-selectin was not expressed in the endothelium of the glomerulus or interstitium. Thus, the protective effect in wild-type mice may be accounted for, in part by soluble P-selectin shed by non-renal endothelial cells, although other endothelial P-selectin-dependent mechanisms cannot be ruled out.  (+info)

Essential role of P-selectin in the initiation of the inflammatory response induced by hemorrhage and reinfusion. (19/26264)

Resuscitation from hemorrhage induces profound pathophysiologic alterations and activates inflammatory cascades able to initiate neutrophil accumulation in a variety of tissues. This process is accompanied by acute organ damage (e.g., lungs and liver). We have previously demonstrated that significant leukocyte-endothelium interactions occur very early in other forms of ischemia/reperfusion (i.e., splanchnic ischemia/reperfusion and traumatic shock) which are largely mediated by increased expression of the adhesion molecule, P-selectin, on the vascular endothelium. Here we postulated that increased endothelial expression of P-selectin in the microvasculature would play an essential role in initiating the inflammatory signaling of hemorrhagic shock. Using intravital microscopy, we found that hemorrhagic shock significantly increased the number of rolling and adherent leukocytes in the mouse splanchnic microcirculation. In contrast, mice genetically deficient in P-selectin, or wild-type mice given either an anti-P-selectin monoclonal antibody or a recombinant soluble P-selectin glycoprotein ligand (PSGL)-1 immunoglobulin, exhibited markedly attenuated leukocyte-endothelium interaction after hemorrhagic shock. Thus, activation of P-selectin protein on the microvascular endothelium is essential for the initial upregulation of the inflammatory response occurring in hemorrhagic shock. Moreover, endogenous levels of PSGL-1 mRNA were significantly increased in the lung, liver, and small intestine of wild-type mice subjected to hemorrhagic shock. Since PSGL-1 promotes adhesive interactions largely through P-selectin expressed on the vascular endothelium, this result further supports the crucial role played by P-selectin in the recruitment of leukocytes during hemorrhagic shock.  (+info)

Tenascin-C is expressed in macrophage-rich human coronary atherosclerotic plaque. (20/26264)

BACKGROUND: Tenascin is a large extracellular matrix glycoprotein generally found in adult tissues undergoing active remodeling such as healing wounds and tumors. To determine the potential role of tenascin-C (TN-C) in the pathophysiology of atherosclerosis, we investigated the pattern of expression of TN-C in human coronary atherosclerotic plaques. METHODS AND RESULTS: Immunohistochemical staining and in situ hybridization demonstrated minimal and random expression of TN-C in fibrotic but lipid-poor atherosclerotic plaques. In contrast, all plaques with an organized lipid core or ruptured intimal surface strongly expressed TN-C, which was preferentially concentrated around the lipid core, shoulder regions, and ruptured area of the plaques but not in the fibrous cap. TN-C was not detected in normal arterial tissue. To identify the cellular source of TN-C, the plaques were stained with smooth muscle cell- and macrophage-specific antibodies. TN-C expression correlated with the infiltration of macrophages. Northern blot and immunoprecipitation analysis showed that macrophages expressed 7. 0-kb TN-C mRNA and 220-kDa protein. Reverse transcription-polymerase chain reaction of total RNA derived from macrophages showed that they express the small isoform of TN-C. Zymogram analysis revealed that macrophages markedly increased MMP-9 expression. CONCLUSIONS: This study demonstrates that the level of TN-C expression correlates with the degree of inflammation present, not with plaque size. In addition, cultured macrophages have the capacity to express the TN-C gene. These findings suggest the significance of macrophages in the remodeling of atherosclerotic plaque matrix composition.  (+info)

Cyclophilin C-associated protein: a normal secreted glycoprotein that down-modulates endotoxin and proinflammatory responses in vivo. (21/26264)

Mouse cyclophilin C-associated protein (CyCAP) is a member of the scavenger-receptor cysteine-rich domain superfamily and is 69% identical to the human Mac-2 binding protein. Here, we show that CyCAP is a widely expressed secreted glycoprotein that modulates the host response to endotoxin. Gene-targeted CyCAP-deficient mice are more sensitive to the lethal effects of endotoxin. In response to endotoxin, CyCAP-deficient mice overproduced interleukin 12 and interferon-gamma systemically and tumor necrosis factor alpha locally; these are proinflammatory molecules that also promote T helper 1 responses. Furthermore, macrophages stimulated in vitro with endotoxin in serum deficient in CyCAP secreted more tumor necrosis factor alpha, supporting the proposal that CyCAP specifically down-modulates endotoxin signaling.  (+info)

Chronic protein undernutrition and an acute inflammatory stimulus elicit different protein kinetic responses in plasma but not in muscle of piglets. (22/26264)

The changes in protein metabolism of severe childhood malnutrition are generally perceived as a metabolic adaptation to chronic protein undernutrition. However, severe malnutrition is invariably accompanied by infections which also have profound effects on protein metabolism. This study aimed to distinguish the effect of protein undernutrition from that of an inflammatory stimulus on muscle and plasma protein synthesis rates. Two groups of five piglets consumed diets containing either 23% or 3% protein for 4 wk. They then were infused intravenously with 2H3-leucine before and 48 h after subcutaneous injections of turpentine to measure the fractional synthesis rates (FSR) of muscle protein and both the FSR and the absolute synthesis rates (ASR) of albumin and fibrinogen. Prior to turpentine injection, compared to control piglets, protein-deficient piglets had significantly lower muscle FSR and plasma concentrations of both albumin and fibrinogen, although only albumin had lower FSR and ASR. Turpentine injection decreased muscle FSR but increased the FSR, ASR and plasma concentrations of both albumin and fibrinogen in control piglets. In protein-deficient piglets, the inflammatory stress caused a further decrease in muscle protein FSR and in plasma albumin concentration despite marked increases in albumin FSR and ASR. Fibrinogen FSR, ASR and plasma concentration were increased. We conclude that protein undernutrition and inflammation elicit the same kinetic response in muscle protein but different kinetic responses in plasma proteins. Furthermore, whereas protein deficiency reduces the plasma albumin pool via a reduction in albumin synthesis, inflammation reduces it through a stimulation of catabolism and/or loss from the intravascular space.  (+info)

Contact hypersensitivity: a simple model for the characterization of disease-site targeting by liposomes. (23/26264)

A murine model of delayed-type hypersensitivity (DTH) is characterized with respect to liposome accumulation at a site of inflammation. Mice were sensitized by painting the abdominal region with a solution of 2,4-dinitrofluorobenzene (DNFB) and inflammation was induced 5 days later by challenging the ear with a dilute solution of DNFB. The inflammatory response was readily monitored by measuring ear thickness (edema) and radiolabeled leukocyte infiltration. Maximum ear swelling and cellular infiltration occurred 24 h after the epicutaneous challenge with the ear returning to normal size after approximately 72 h. We demonstrate that large unilamellar vesicles (LUV) accumulate at the site of inflammation to a level more than 20-fold higher than that measured in the untreated ear. Vesicle delivery to the ear correlated with increased vascular leakage resulting from endothelium remodeling in response to DNFB challenge, and was not a consequence of increased local tissue blood volume. Extravasation occurred only during the first 24 h after ear challenge; after this time the permeability of the endothelium to vesicles returned to normal. We further showed that LUV with a diameter of 120 nm exhibit maximum levels of accumulation, that a polyethylene glycol surface coating does not increase delivery, and that the process can be inhibited by the application of topical corticosteroids at the time of induction. These data and the inflammation model are discussed with respect to developing lipid-based drug delivery vehicles designed to accumulate at inflammatory disease sites.  (+info)

Decreased CGRP, but preserved Trk A immunoreactivity in nerve fibres in inflamed human superficial temporal arteries. (24/26264)

The peptidergic sensory innervation of cranial blood vessels may play an important part in vascular head pain. The neuropeptides calcitonin gene-related peptide (CGRP) and substance P in sensory fibres are dependent on nerve growth factor (NGF) produced by the blood vessels, and when released from nerve terminals mediate neurogenic inflammation. NGF is increased in inflamed tissues, and acts via its high affinity receptor trk A on nociceptor fibres to produce hyperalgesia. CGRP and trk A immunoreactive nerve fibres have therefore been studied, for the first time, in inflamed (n=7) and non-inflamed (n=10) temporal arteries biopsied from patients with headache and suspected giant cell arteritis. CGRP immunoreactivity was markedly decreased to absent in adventitial nerve fibres in inflamed regions of vessels, which may reflect secretion from nerve terminals, as CGRP immunoreactivity could still be seen in nerve trunks in periadventitial tissue. Trk A immunoreactive nerve fibres were found in a similar distribution to CGRP containing nerve fibres in non-inflamed vessels, and the trk A immunoreactivity was virtually unchanged in inflamed vessels. The evidence supports a role for NGF related mechanisms in inflammatory vascular head pain. Anti-NGF or anti-trk A agents may represent novel analgesics in this condition.  (+info)