Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. (1/450)

BACKGROUND: Neovascularization within the intima of human atherosclerotic lesions is well described, but its role in the progression of atherosclerosis is unknown. In this report, we first demonstrate that intimal vessels occur in advanced lesions of apolipoprotein E-deficient (apoE -/-) mice. To test the hypothesis that intimal vessels promote atherosclerosis, we investigated the effect of angiogenesis inhibitors on plaque growth in apoE -/- mice. METHODS AND RESULTS: ApoE -/- mice were fed a 0.15% cholesterol diet. At age 20 weeks, mice were divided into 3 groups and treated for 16 weeks as follows: group 1, recombinant mouse endostatin, 20 mg. kg-1. d-1; group 2, fumagillin analogue TNP-470, 30 mg/kg every other day; and group 3, control animals that received a similar volume of buffer. Average cholesterol levels were similar in all groups. Plaque areas were quantified at the aortic origin. Median plaque area before treatment was 0.250 mm2 (range, 0.170 to 0.348; n=10). Median plaque areas were 0.321 (0.238 to 0.412; n=10), 0.402 (0.248 to 0.533; n=15), and 0.751 mm2 (0.503 to 0.838; n=12) for the endostatin, TNP-470, and control groups, respectively (P+info)

Endostatin induces endothelial cell apoptosis. (2/450)

Endostatin, a carboxyl-terminal fragment of collagen XVIII, has been shown to regress tumors in mice. In this study, we have analyzed the mechanism of endostatin action on endothelial cells and nonendothelial cells. Endostatin treatment of cow pulmonary artery endothelial cells caused apoptosis, as demonstrated by three methods, annexin V-fluorescein isothiocyanate staining, caspase 3, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling assay. Moreover, addition of endostatin led to a marked reduction of the Bcl-2 and Bcl-XL anti-apoptotic protein, whereas Bax protein levels were unaffected. These effects were not seen in several nonendothelial cells. Collectively, these findings provide important mechanistic insight into endostatin action.  (+info)

Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. (3/450)

Solid tumors depend on angiogenesis for their growth. In a transgenic mouse model of pancreatic islet cell carcinogenesis (RIP1-Tag2), an angiogenic switch occurs in premalignant lesions, and angiogenesis persists during progression to expansive solid tumors and invasive carcinomas. RIP1-Tag2 mice were treated so as to compare the effects of four angiogenesis inhibitors at three distinct stages of disease progression. AGM-1470, angiostatin, BB-94, and endostatin each produced distinct efficacy profiles in trials aimed at preventing the angiogenic switch in premalignant lesions, intervening in the rapid expansion of small tumors, or inducing the regression of large end-stage cancers. Thus, anti-angiogenic drugs may prove most efficacious when they are targeted to specific stages of cancer.  (+info)

Endostatin binds to blood vessels in situ independent of heparan sulfate and does not compete for fibroblast growth factor-2 binding. (4/450)

Endostatin is a carboxyl-terminal proteolytic fragment of collagen XVIII and a potent inhibitor of angiogenesis. The mechanism of action is unknown, but the crystal structure of endostatin predicts a prominent heparan sulfate binding site, suggesting that endostatin competitively inhibits heparin-binding angiogenic factors, such as basic fibroblast growth factor (FGF-2). The goal of the study was to map endostatin binding sites in intact human tissues and to determine whether this binding is heparan sulfate dependent. In situ binding was performed with recombinant epitope-tagged murine endostatin. Endostatin predominantly binds to blood vessels of different calibers in a saturable fashion. In addition, binding to some epithelial basement membranes is seen. The localization pattern is similar to that reported for collagen XVIII, endostatin's parent molecule. In breast carcinomas, endostatin co-localizes largely with FGF-2. In a surprising contrast to FGF-2, endostatin binding is resistant to treatment with heparitinase, demonstrating that binding is not mediated by heparan sulfate proteoglycans. Furthermore, FGF-2 and heparin do not compete for endostatin binding, providing additional evidence for the discreteness of endostatin and FGF-binding sites.  (+info)

Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. (5/450)

Gene therapy transfer of angiostatin and endostatin represents an alternative method of delivering angiogenic polypeptide inhibitors. We examined whether liposomes complexed to plasmids encoding angiostatin or endostatin inhibited angiogenesis and the growth of MDA-MB-435 tumors implanted in the mammary fat pads of nude mice. We determined that plasmids expressing angiostatin (PCI-Angio) or endostatin (PCI-Endo) effectively reduced angiogenesis using an in vivo Matrigel assay. We then investigated the efficacy of these plasmids in reducing the size of tumors implanted in the mammary fat pad of nude mice. Both PCI-Angio and PCI-Endo significantly reduced tumor size when injected intratumorally (P < 0.05). Compared to the untreated control group, the mice treated with PCI-Angio and PCI-Endo exhibited a reduction in tumor size of 36% and 49%, respectively. In addition, we found that i.v. injections of liposomes complexed to PCI-Endo reduced tumor growth in the nude mice by nearly 40% when compared to either empty vector (PCI) or untreated controls (P < 0.05). These findings provide a basis for the further development of nonviral delivery of antiangiogenic genes.  (+info)

Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. (6/450)

Endostatin, produced as recombinant protein in human 293-EBNA cells, inhibits the migration of human umbilical vein endothelial cells (HUVECs) in response to vascular endothelial growth factor (VEGF) in a dose-dependent manner and prevents the subcutaneous growth of human renal cell carcinomas in nude mice at concentrations and in doses that are from 1000- to 100 000-fold lower than those previously reported. The inhibition of migration is not affected by mutations which eliminate Zn or heparin binding and inhibition of tumor growth does not depend on Zn binding. The results of the migration assays suggest that endostatin causes a block at one or more steps in VEGF-induced migration, while VEGF in turn can cause a block of the inhibition by endostatin of VEGF-induced migration of HUVECs.  (+info)

Angiogenesis inhibitor endostatin is a distinct component of elastic fibers in vessel walls. (7/450)

Theendothelial cell inhibitor endostatin (22 kDa) is part of the carboxyl-terminal globular domain of collagen XVIII and shows a widespread tissue distribution. Immunohistology of adult mouse tissues demonstrated a preferred localization in many vessel walls and some other basement membrane zones. A strong immunogold staining was observed across elastic fibers in the multiple elastic membranes of aorta and other large arteries. Staining was less strong along sparse elastic fibers of veins and almost none was observed in the walls of arterioles and capillaries. Strong evidence was also obtained for some intracellular and basement membrane associations. Immunogold double staining of elastic fibers showed a close colocalization of endostatin with fibulin-2, fibulin-1, and nidogen-2, but not with perlecan. Reasonable amounts of endostatin could be extracted from aorta and skin by EDTA, followed by detergents, with aorta being the richest source of the inhibitor identified so far. Solubilizations with collagenase and elastase were approximately fivefold less efficient. Immunoblots of aortic extracts detected major endostatin components of 22-25 kDa whereas skin extracts also contained some larger components. Solid-phase assays demonstrated distinct binding of recombinant mouse endostatin to the fibulins and nidogen-2, consistent with their tissue colocalization. Together, the data indicate several different ways for endostatin to be associated with the extracellular matrix, and its release may determine biological activation. This also defines a novel function for some elastic tissues.  (+info)

Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. (8/450)

The effects of the angiogenic inhibitors endostatin, angiostatin, and TNP-470 on tumor growth dynamics are experimentally and theoretically investigated. On the basis of the data, we pose a quantitative theory for tumor growth under angiogenic stimulator/inhibitor control that is both explanatory and clinically implementable. Our analysis offers a ranking of the relative effectiveness of these inhibitors. Additionally, it reveals the existence of an ultimate limitation to tumor size under angiogenic control, where opposing angiogenic stimuli come into dynamic balance, which can be modulated by antiangiogenic therapy. The competitive influences of angiogenically driven growth and inhibition underlying this framework may have ramifications for tissue size regulation in general.  (+info)