Resistance of HBL100 human breast epithelial cells to vitamin D action. (57/8454)

Vitamin D analogs are effective inhibitors of breast cancer cell growth, but many breast cancer cell lines show various degrees of resistance to the growth inhibitory effect of vitamin D. In this study, we investigated the mechanism of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] resistance of the human breast epithelial cell line HBL100, which had been immortalized by Simian virus 40 (SV40) large T antigen. We determined the expression, DNA binding and transactivation activity of vitamin D3 receptor (VDR) in HBL100 and a vitamin D-sensitive ZR75-1 breast cancer cell line. Western blot analysis revealed a comparable expression of VDR gene in both cell lines. However, gel retardation assays demonstrated nuclear proteins from ZR75-1 cells but not from HBL100; cells expressed a 9-fold increase in the binding activity with a vitamin D response element (VDRE). Using a transient transfection assay, we showed that the VDRE was activated by 8-fold in ZR75-1. However, in HBL100 cells there was no activation observed in response to 1,25(OH)2D3. On the other hand, co-transfection of a VDR expression vector could restore 1,25(OH)2D3-induced VDRE transcription in HBL100 cells. Moreover, stable expression of VDR in HBL100 cells resulted in enhanced sensitivity of the cells to the growth inhibitory effect of 1,25(OH)2D3. Since CV-1 cells express very little endogenous VDR, the interactions of VDR and large T antigen were carried out in these cells. By transient co-transfection, we observed that expression of the large T antigen strongly inhibited 1,25(OH)2D3-induced VDRE transcriptional activity in a dose-dependent fashion in CV-1 cells. At 120 ng VDR concentration, the inhibition was completely reversed. Thus the loss of the growth inhibitory effect of vitamin D3 in HBL100 cells may be caused by the expression of the large T antigen in the cells, and provide further evidence that VDR is required for efficient growth inhibition by vitamin D3.  (+info)

Preliminary analysis of azoxymethane-induced colon tumorigenesis in mouse aggregation chimeras. (58/8454)

Inbred mice exhibit differential susceptibility to colon carcinogens. The following study addresses the possibility that differences are intrinsic to colonic mucosa (cell autonomous) or are mediated by extracolonic systemic factors (e.g. liver activation of carcinogens). Our approach was to construct mouse aggregation chimeras, mice whose tissues are a mosaic of cells derived from two parental genotypes, from a susceptible (SWR) and a resistant (DBA/2) strain. Forty-five embryo aggregations yielded 11 viable pups, four of which were chimeric by coat color. Six-week-old SWR<-->BA/2 chimeras were injected i.p. with azoxymethane (AOM) once a week for 8 weeks (5 and 7.5 mg/kg body wt for 2 weeks followed by 10 mg/kg for 6 weeks) and tumor incidence in distal colon was evaluated 15 weeks after the last injection. Additional groups of parental mice received the same treatment. In the parental SWR treatment group, 1.7 +/- 0.82 tumors/colon were found. No tumors were observed in AOM-treated DBA/2 mice. In SWR<-->DBA/2 chimeras exposed to AOM, 2.8 +/- 2.1 tumors/colon were found. Tumor lineage was examined in paraffin sections stained with Dolichos biflorus agglutinin-peroxidase, a cell surface specific marker that stains intestinal endothelial cells of SWR and epithelial cells of DBA/2. Cellular lineage of tumors was further evaluated by microsatellite analysis of DNA isolated by microdissection. There was no significant difference in tumor incidence between SWR parental and chimera treatment groups. Histochemical analysis of tumor tissue in chimeras suggested that most tumors were derived from SWR. However, subsequent genetic analysis of tumors indicated mixed parental composition. These preliminary studies suggest that DBA/2 resistance mechanisms are not sufficient to protect adjacent SWR-derived epithelium from the tumorigenic effects of AOM.  (+info)

Green fluorescent protein as a marker in Plasmodium berghei transformation. (59/8454)

We present a new marker that confers both resistance to pyrimethamine and green fluorescent protein-based fluorescence on the malarial parasite Plasmodium berghei. A single copy of the cassette integrated into the genome is sufficient to direct fluorescence in parasites throughout the life cycle, in both its mosquito and vertebrate hosts. Erythrocyte stages of the parasite that express the marker can be sorted from control parasites by flow cytometry. Pyrimethamine pressure is not necessary for maintaining the cassette in transformed parasites during their sporogonic cycle in mosquitoes, including when it is borne by a plasmid. This tool should thus prove useful in molecular studies of P. berghei, both for generating parasite variants and monitoring their behavior.  (+info)

Drug extrusion, 125I- efflux and the control of intracellular [Ca2+] in drug-resistant ovarian epithelial cells. (60/8454)

Experiments were undertaken using an ovarian adenocarcinoma cell line (A2780) and a drug-resistant strain (A2780.ad) derived from this line. P-glycoprotein could not be detected in A2780 cells but was essentially ubiquitous in A2780.ad cells, although removing the selective pressure for drug resistance led to reduced expression. However, the amount of P-glycoprotein present was used to predict the capacity of these cells to extrude rhodamine-123 (R-123) and their resistance to adriamycin, a cytotoxic drug. This accords with the role of P-glycoprotein as a drug pump. Although hypotonic solutions increased anion efflux from A2780 and A2780.ad cells, larger responses occurred in the parental line. Moreover, R-123 extrusion and anion efflux appeared to be mutually independent processes and so these data do not support the view that P-glycoprotein is involved in the control of volume-sensitive anion channels. Hypotonic solutions increased intracellular free calcium ([Ca2+]i) in drug-resistant cells but not in the parental line, and so establishing a drug-resistant strain may affect the control of [Ca2+]i during osmotic swelling. This could account for effects that were previously attributed to P-glycoprotein.  (+info)

Clinical resistance patterns and responses to two sequential protease inhibitor regimens in saquinavir and reverse transcriptase inhibitor-experienced persons. (61/8454)

The efficacy of sequential protease inhibitor therapy was studied in 16 human immunodeficiency virus (HIV) 1-infected persons in whom saquinavir with multiple nucleoside reverse transcriptase (RT) inhibitors (NRTI) had failed. Nelfinavir plus two NRTIs (new or continued) resulted in minimal (0.59 log RNA copies/mL) and transient (8 weeks) suppression of plasma HIV RNA levels. Rapid failure was surprisingly associated with baseline presence of protease gene mutation L90M (P=.04) in the absence of D30N and with RT mutations D67N (P<.01), K70R/S (P=.02), and K219Q/W/R/E (P<.01). Ten patients were subsequently switched to indinavir plus nevirapine and 2 NRTIs, resulting in a median 1.62 log reduction in plasma HIV RNA, with 3 patients maintaining 400 copies/mL for 24 weeks. These results suggest that nelfinavir may have limited utility after saquinavir failure, particularly without potent concomitant therapy. Combining an NRTI with a new protease inhibitor for rescue may improve response.  (+info)

Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae. (62/8454)

Functional cloning led to the isolation of a novel methotrexate (MTX) resistance gene in the protozoan parasite Leishmania. The gene corresponds to orfG, an open reading frame (ORF) of the LD1/CD1 genomic locus that is frequently amplified in several Leishmania stocks. A functional ORF G-green fluorescence protein fusion was localized to the plasma membrane. Transport studies indicated that ORF G is a high affinity biopterin transporter. ORF G also transports folic acid, with a lower affinity, but does not transport the drug analog MTX. Disruption of both alleles of orfG led to a mutant strain that became hypersensitive to MTX and had no measurable biopterin transport. Leishmania tarentolae MTX-resistant cells without their high affinity folate transporters have a rearranged orfG gene and increased orfG RNA levels. Overexpression of orfG leads to increased biopterin uptake and, in folate-rich medium, to increased folate uptake. MTX-resistant cells compensate for mutations in their high affinity folate/MTX transporter by overexpressing ORF G, which increases the uptake of pterins and selectively increases the uptake of folic acid, but not MTX.  (+info)

Beneficial effects of fibrates on apolipoprotein A-I metabolism occur independently of any peroxisome proliferative response. (63/8454)

BACKGROUND: In humans, fibrates are frequently used normolipidemic drugs. Fibrates act by regulating genes involved in lipoprotein metabolism via activation of the peroxisome proliferator-activated receptor-alpha (PPARalpha) in liver. In rodents, however, fibrates induce a peroxisome proliferation, leading to hepatomegaly and possibly hepatocarcinogenesis. Although this peroxisome proliferative response appears not to occur in humans, it remains controversial whether the beneficial effects of fibrates on lipoprotein metabolism can occur dissociated from such undesirable peroxisomal response. Here, we assessed the influence of fenofibrate on lipoprotein metabolism and peroxisome proliferation in the rabbit, an animal that, contrary to rodents and similar to humans, is less sensitive to peroxisome proliferators. METHODS AND RESULTS: First, we demonstrate that in normal rabbits, fenofibrate given at a high dose for 2 weeks does not influence serum concentrations or intestinal mRNA levels of the HDL apolipoprotein apoA-I. Therefore, the study was continued with human apoA-I transgenic rabbits that overexpress the human apoA-I gene under control of its homologous promoter, including its PPAR-response elements. In these animals, fenofibrate increases serum human apoA-I concentrations via an increased expression of the human apoA-I gene in liver. Interestingly, liver weight or mRNA levels and activity of fatty acyl-CoA oxidase, a rate-limiting and marker enzyme of peroxisomal beta-oxidation, remain unchanged after fenofibrate. CONCLUSIONS: Expression of the human apoA-I transgene in rabbit liver suffices to confer fibrate-mediated induction of serum apoA-I. Furthermore, these data provide in vivo evidence that the beneficial effects of fibrates on lipoprotein metabolism occur mechanistically dissociated from any deleterious activity on peroxisome proliferation and possibly hepatocarcinogenesis.  (+info)

Transluminal angioplasty for middle cerebral artery stenosis in patients with acute ischemic stroke. (64/8454)

BACKGROUND AND PURPOSE: Precutaneous transluminal angioplasty (PTA) is currently performed to treat supraaortic atherosclerotic lesions. Our purpose was to evaluate the safety and efficacy of PTA for middle cerebral artery (MCA) stenosis in patients with acute ischemic stroke. METHODS: We performed PTA with the use of a microballoon (2-2.5 mm in diameter and 10-13 mm in length) in 10 consecutive patients (mean age, 48 years) who met the following criteria: high-grade M1 stenosis (> 70%) and mild neurologic deficits (NIH stroke scale < 4) and/or recurrent transient ischemic attacks (TIAs) resistant to anticoagulation, or a large area of hypoperfusion in the MCA territory on brain perfusion SPECT scans. During follow-up, we administered antiplatelet agents and evaluated the status of restenosis by angiography (n = 2), brain perfusion SPECT (n = 4), and/or transcranial Doppler sonography (TCD) (n = 7). RESULTS: Stenotic arteries were successfully dilated in nine of 10 patients. Angioplasty failed in one patient because the balloon could not pass through the tortuous cavernous internal carotid artery. None of the patients experienced either peri- or postangioplasty complications. Residual stenosis was less than 50%, and clinical improvement, including elimination of TIAs in four patients who had suffered resistant TIAs, was observed in all patients; improvement of the cerebral perfusion was also noted in two patients with a large hypoperfusion area in the MCA territory. The average follow-up period was 11 months (range, 2 to 36 months). None experienced recurrent stroke during the follow-up period. TCD revealed decreased flow velocity of the MCA after angioplasty in seven patients. CONCLUSION: PTA of the proximal portion of the MCA seems to be a safe and effective therapeutic technique for the prevention of secondary ischemic stroke.  (+info)