Involvement of polyomavirus enhancer activator 3 in the regulation of expression of gamma-glutamyl transpeptidase messenger ribonucleic acid-IV in the rat epididymis. (33/66602)

Gamma-glutamyl transpeptidase (GGT) mRNA-IV and polyomavirus enhancer activator 3 (PEA3) mRNA are highly expressed in the initial segment of the rat epididymis, and both are regulated by testicular factors. PEA3 protein in rat initial segment nuclear extracts has been shown to bind to a PEA3/Ets binding motif, which is derived from the partially characterized GGT mRNA-IV promoter region. This suggests that PEA3 may be involved in regulating transcription from the rat GGT mRNA-IV gene promoter in the initial segment. Using DNA oligonucleotide primers and DNA sequencing analysis, an approximately 1500-basepair (bp) DNA sequence at the 5' region of the promoter was obtained. Using transient transfection, PEA3 activated transcription of the rat GGT mRNA-IV promoter only in cultured epididymal cells from the rat initial segment, but not in Cos-1 or NRK-52E cells. Promoter deletion analysis indicated that a PEA3/Ets binding motif between nucleotides -22 and -17 is the functional site for PEA3 to activate transcription of GGT promoter IV and that an adjacent Sp1 binding motif is also required to maintain promoter IV activity in epididymal cells. Transcriptional activation of promoter IV was shown to be epididymal cell-specific and PEA3-specific. In addition, PEA3 may act as a weak repressor for transcription of promoter IV, probably using a PEA3/Ets binding motif(s) distal to the transcription start site. A model of how PEA3 is involved in the regulation of transcription of GGT promoter IV in epididymal cells is proposed.  (+info)

Cloning, sequencing, and localization of bovine estrogen receptor-beta within the ovarian follicle. (34/66602)

The potential role of estrogen receptor-beta (ERbeta) in normal ovarian folliculogenesis and in reproductive disorders such as ovarian follicular cysts has not been well defined. Therefore, we were interested in cloning, sequencing, and localizing ERbeta mRNA and protein within the bovine ovary. Bovine ERbeta (bERbeta) was amplified by reverse transcription-polymerase chain reaction (RT-PCR), then cloned and sequenced. Results showed that the open reading frame of bERbeta cDNA spanned 1584 nucleotides encoding a protein of 527 amino acids. The N-terminal region of bERbeta was found to be 80% homologous to human and mouse ERbeta and 79% homologous to rat ERbeta. Bovine ERbeta DNA-binding domain was 100% homologous to human, mouse, and rat ERbeta sequences. The C-terminal/ligand-binding domain of bERbeta was 89% homologous to human, 86% homologous to mouse, and 88% homologous to rat ERbeta. Human and bovine ERbeta amino acid sequences are similar in that their coding region extended farther 5' than initially reported for the published rat ERbeta sequence. Using in situ hybridization and immunohistochemistry, ERbeta mRNA and protein, respectively, were demonstrated to be present in granulosa cells of antral follicles in various stages of follicular growth. These findings suggest a role for bERbeta in ovarian follicular growth and maturation.  (+info)

X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. (35/66602)

Expression of the X inactive-specific transcript (Xist) is thought to be essential for the initiation of X chromosome inactivation and dosage compensation during female embryo development. In the present study, we analyzed the patterns of Xist transcription and the onset of X chromosome inactivation in bovine preattachment embryos. Reverse transcription-polymerase chain reaction (RT-PCR) revealed the presence of Xist transcripts in all adult female somatic tissues evaluated. In contrast, among the male tissues examined, Xist expression was detected only in testis. No evidence for Xist transcription was observed after a single round of RT-PCR from pools of in vitro-derived embryos at the 2- to 4-cell stage. Xist transcripts were detected as a faint amplicon at the 8-cell stage initially, and consistently thereafter in all stages examined up to and including the expanded blastocyst stage. Xist transcripts, however, were subsequently detected from the 2-cell stage onward after nested RT-PCR. Preferential [3H]thymidine labeling indicative of late replication of one of the X chromosomes was noted in female embryos of different developmental ages as follows: 2 of 7 (28.5%) early blastocysts, 6 of 13 (46.1%) blastocysts, 8 of 11 (72.1%) expanded blastocysts, and 14 of 17 (77.7%) hatched blastocysts. These results suggest that Xist expression precedes the onset of late replication in the bovine embryo, in a pattern compatible with a possible role of bovine Xist in the initiation of X chromosome inactivation.  (+info)

A critical role for cAMP response element-binding protein (CREB) as a Co-activator in sterol-regulated transcription of 3-hydroxy-3-methylglutaryl coenzyme A synthase promoter. (36/66602)

3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, a key regulatory enzyme in the pathway for endogenous cholesterol synthesis, is a target for negative feedback regulation by cholesterol. When cellular sterol levels are low, the sterol regulatory element-binding proteins (SREBPs) are released from the endoplasmic reticulum membrane, allowing them to translocate to the nucleus and activate SREBP target genes. However, in all SREBP-regulated promoters studied to date, additional co-regulatory transcription factors are required for sterol-regulated activation of transcription. We have previously shown that, in addition to SREBPs, NF-Y/CBF is required for sterol-regulated transcription of HMG-CoA synthase. This heterotrimeric transcription factor has recently been shown to function as a co-regulator in several other SREBP-regulated promoters, as well. In addition to cis-acting sites for both SREBP and NF-Y/CBF, the sterol regulatory region of the synthase promoter also contains a consensus cAMP response element (CRE), an element that binds members of the CREB/ATF family of transcription factors. Here, we show that this consensus CRE is essential for sterol-regulated transcription of the synthase promoter. Using in vitro binding assays, we also demonstrate that CREB binds to this CRE, and mutations within the CRE that result in a loss of CREB binding also result in a loss of sterol-regulated transcription. We further show that efficient activation of the synthase promoter in Drosophila SL2 cells requires the simultaneous expression of all three factors: SREBPs, NF-Y/CBF, and CREB. To date this is the first promoter shown to require CREB for efficient sterol-regulated transcription, and to require two different co-regulatory factors in addition to SREBPs for maximal activation.  (+info)

Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. (37/66602)

The human XPG endonuclease cuts on the 3' side of a DNA lesion during nucleotide excision repair. Mutations in XPG can lead to the disorders xeroderma pigmentosum (XP) and Cockayne syndrome. XPG shares sequence similarities in two regions with a family of structure-specific nucleases and exonucleases. To begin defining its catalytic mechanism, we changed highly conserved residues and determined the effects on the endonuclease activity of isolated XPG, its function in open complex formation and dual incision reconstituted with purified proteins, and its ability to restore cellular resistance to UV light. The substitution A792V present in two XP complementation group G (XP-G) individuals reduced but did not abolish endonuclease activity, explaining their mild clinical phenotype. Isolated XPG proteins with Asp-77 or Glu-791 substitutions did not cleave DNA. In the reconstituted repair system, alanine substitutions at these positions permitted open complex formation but were inactive for 3' cleavage, whereas D77E and E791D proteins retained considerable activity. The function of each mutant protein in the reconstituted system was mirrored by its ability to restore UV resistance to XP-G cell lines. Hydrodynamic measurements indicated that XPG exists as a monomer in high salt conditions, but immunoprecipitation of intact and truncated XPG proteins showed that XPG polypeptides can interact with each other, suggesting dimerization as an element of XPG function. The mutation results define critical residues in the catalytic center of XPG and strongly suggest that key features of the strand cleavage mechanism and active site structure are shared by members of the nuclease family.  (+info)

Human geranylgeranyl diphosphate synthase. cDNA cloning and expression. (38/66602)

Geranylgeranyl diphosphate (GGPP) synthase (GGPPSase) catalyzes the synthesis of GGPP, which is an important molecule responsible for the C20-prenylated protein biosynthesis and for the regulation of a nuclear hormone receptor (LXR.RXR). The human GGPPSase cDNA encodes a protein of 300 amino acids which shows 16% sequence identity with the known human farnesyl diphosphate (FPP) synthase (FPPSase). The GGPPSase expressed in Escherichia coli catalyzes the GGPP formation (240 nmol/min/mg) from FPP and isopentenyl diphosphate. The human GGPPSase behaves as an oligomeric molecule with 280 kDa on a gel filtration column and cross-reacts with an antibody directed against bovine brain GGPPSase, which differs immunochemically from bovine brain FPPSase. Northern blot analysis indicates the presence of two forms of the mRNA.  (+info)

Expression of skeletal muscle sarcoplasmic reticulum calcium-ATPase is reduced in rats with postinfarction heart failure. (39/66602)

OBJECTIVE: To determine whether heart failure in rats is associated with altered expression of the skeletal muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA). METHODS: SERCA protein and mRNA were examined in the soleus muscles of eight female rats with heart failure induced by coronary artery ligation, six weeks after the procedure (mean (SEM) left ventricular end diastolic pressure 20.4 (2.2) mm Hg) and in six sham operated controls by western and northern analyses, respectively. RESULTS: SERCA-2a isoform protein was reduced by 16% (112 000 (4000) v 134 000 (2000) arbitrary units, p < 0.001), and SERCA-2a messenger RNA was reduced by 59% (0.24 (0. 06) v 0.58 (0.02) arbitrary units, p < 0.001). Although rats with heart failure had smaller muscles (0.54 mg/g v 0.66 mg/g body weight), no difference in locomotor activity was observed. CONCLUSIONS: These results may explain the previously documented abnormalities in calcium handling in skeletal muscle from animals with the same model of congestive heart failure, and could be responsible for the accelerated muscle fatigue characteristic of patients with heart failure.  (+info)

Characterization of nuclear structures containing superhelical DNA. (40/66602)

Structures resembling nuclei but depleted of protein may be released by gently lysing cells in solutions containing non-ionic detergents and high concentrations of salt. These nucleoids sediment in gradients containing intercalating agents in a manner characteristic of DNA that is intact, supercoiled and circular. The concentration of salt present during isolation of human nucleoids affects their protein content. When made in I-95 M NaCl they lack histones and most of the proteins characteristic of chromatin; in 1-0 M NaCl they contain variable amounts of histones. The effects of various treatments on nucleoid integrity were investigated.  (+info)