Nonmethylated transposable elements and methylated genes in a chordate genome. (1/945)

The genome of the invertebrate chordate Ciona intestinalis was found to be a stable mosaic of methylated and nonmethylated domains. Multiple copies of an apparently active long terminal repeat retrotransposon and a long interspersed element are nonmethylated and a large fraction of abundant short interspersed elements are also methylation free. Genes, by contrast, are predominantly methylated. These data are incompatible with the genome defense model, which proposes that DNA methylation in animals is primarily targeted to endogenous transposable elements. Cytosine methylation in this urochordate may be preferentially directed to genes.  (+info)

Self-regulated polymerization of the actin-related protein Arp1. (2/945)

The actin-related protein Arp1 (or centractin, actin RPV) is the major subunit of dynactin, a key component of the cytoplasmic dynein motor machinery [1] [2] [3]. Of the ubiquitously expressed members of the Arp superfamily, Arp1 is most similar to conventional actin [4] [5] [6] and, on the basis of conserved sequence features, is predicted to bind ATP and possibly polymerize. In vivo, all cytosolic Arp1 sediments at 20S [7] suggesting that it assembles into oligomers, most likely dynactin - a multiprotein complex known to contain eight or nine Arp1 monomers in a 37 nm filament [8]. The uniform length of Arp1 polymers suggests a novel assembly mechanism that may be governed by a 'ruler' activity. In dynactin, the Arp1 filament is bounded by actin-capping protein at one end and a heterotetrameric protein complex containing the p62 subunit (D.M. Eckley, S.R. Gill, J.B.B., J.E. Heuser, T.A.S., unpublished observations) at the other [8]. In the present study, we analyzed the behavior of highly purified, native Arp1. Arp1 was found to polymerize rapidly into short filaments that were similar, but not identical, in length to those in dynactin. With time, these filaments appeared to anneal to form longer assemblies but never attained the length of conventional actin filaments.  (+info)

Binding of a substrate analog to a domain swapping protein: X-ray structure of the complex of bovine seminal ribonuclease with uridylyl(2',5')adenosine. (3/945)

Bovine seminal ribonuclease (BS-RNase) is a unique member of the pancreatic-like ribonuclease superfamily. The native enzyme is a mixture of two dimeric forms with distinct structural features. The most abundant form is characterized by the swapping of N-terminal fragments. In this paper, the crystal structure of the complex between the swapping dimer and uridylyl(2',5')adenosine is reported at 2.06 A resolution. The refined model has a crystallographic R-factor of 0.184 and good stereochemistry. The quality of the electron density maps enables the structure of both the inhibitor and active site residues to be unambiguously determined. The overall architecture of the active site is similar to that of RNase A. The dinucleotide adopts an extended conformation with the pyrimidine and purine base interacting with Thr45 and Asn71, respectively. Several residues (Gln11, His12, Lys41, His119, and Phe120) bind the oxygens of the phosphate group. The structural similarity of the active sites of BS-RNase and RNase A includes some specific water molecules believed to be relevant to catalytic activity. Upon binding of the dinucleotide, small but significant modifications of the tertiary and quaternary structure of the protein are observed. The ensuing correlation of these modifications with the catalytic activity of the enzyme is discussed.  (+info)

Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. (4/945)

Ca2+ transients measured in failing human ventricular myocytes exhibit reduced amplitude, slowed relaxation, and blunted frequency dependence. In the companion article (O'Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart, I: experimental studies. Circ Res. 1999;84:562-570), O'Rourke et al show that Ca2+ transients recorded in myocytes isolated from canine hearts subjected to the tachycardia pacing protocol exhibit similar responses. Analyses of protein levels in these failing hearts reveal that both SR Ca2+ ATPase and phospholamban are decreased on average by 28% and that Na+/Ca2+ exchanger (NCX) protein is increased on average by 104%. In this article, we present a model of the canine midmyocardial ventricular action potential and Ca2+ transient. The model is used to estimate the degree of functional upregulation and downregulation of NCX and SR Ca2+ ATPase in heart failure using data obtained from 2 different experimental protocols. Model estimates of average SR Ca2+ ATPase functional downregulation obtained using these experimental protocols are 49% and 62%. Model estimates of average NCX functional upregulation range are 38% and 75%. Simulation of voltage-clamp Ca2+ transients indicates that such changes are sufficient to account for the reduced amplitude, altered shape, and slowed relaxation of Ca2+ transients in the failing canine heart. Model analyses also suggest that altered expression of Ca2+ handling proteins plays a significant role in prolongation of action potential duration in failing canine myocytes.  (+info)

The Saccharomyces cerevisiae YOR163w gene encodes a diadenosine 5', 5"'-P1,P6-hexaphosphate (Ap6A) hydrolase member of the MutT motif (Nudix hydrolase) family. (5/945)

The YOR163w open reading frame on chromosome XV of the Saccharomyces cerevisiae genome encodes a member of the MutT motif (nudix hydrolase) family of enzymes of Mr 21,443. By cloning and expressing this gene in Escherichia coli and S. cerevisiae, we have shown the product to be a (di)adenosine polyphosphate hydrolase with a previously undescribed substrate specificity. Diadenosine 5',5"'-P1, P6-hexaphosphate is the preferred substrate, and hydrolysis in H218O shows that ADP and adenosine 5'-tetraphosphate are produced by attack at Pbeta and AMP and adenosine 5'-pentaphosphate are produced by attack at Palpha with a Km of 56 microM and kcat of 0.4 s-1. Diadenosine 5',5"'-P1,P5-pentaphosphate, adenosine 5'-pentaphosphate, and adenosine 5'-tetraphosphate are also substrates, but not diadenosine 5',5"'-P1,P4-tetraphosphate or other dinucleotides, mononucleotides, nucleotide sugars, or nucleotide alcohols. The enzyme, which was shown to be expressed in log phase yeast cells by immunoblotting, displays optimal activity at pH 6.9, 50 degrees C, and 4-10 mM Mg2+ (or 200 microM Mn2+). It has an absolute requirement for a reducing agent, such as dithiothreitol (1 mM), and is inhibited by Ca2+ with an IC50 of 3.3 mM and F- (noncompetitively) with a Ki of 80 microM. Its function may be to eliminate potentially toxic dinucleoside polyphosphates during sporulation.  (+info)

Identification and characterization of diadenosine 5',5"'-P1,P2 -diphosphate and diadenosine 5',5"'-P1,P3-triphosphate in human myocardial tissue. (6/945)

We examined whether human cardiac tissue contains diadenosine polyphosphates and investigated their physiological role. Extracts from human cardiac tissue from transplant recipients were fractionated by size exclusion-, affinity-, anion exchange- and reversed-phase chromatography. MALDI-MS analysis of two absorbing fractions revealed molecular masses of 676.2 Da and 756.0 Da. The UV spectra of both fractions were identical to that of adenosine. Postsource decay MALDI mass spectrometry indicated that the molecules with a mass of 676.2 Da and 757.0 Da contained AMP and ATP, respectively. As shown by enzymatic cleavage, both molecules consist of two adenosines interconnected by either two or three phosphates in 5'-positions of the riboses. Two substances can be identified as 5',5"'-P1,P2-diphosphate (Ap2A) and 5',5"'-P1, P3-triphosphate (Ap3A). Ap2A and Ap3A, together with ATP and ADP, are stored in myocardial-specific granules in biologically active concentrations. In the isolated perfused rat heart, Ap2A and Ap3A caused dose-dependent coronary vasodilations. In myocardial preparations, Ap2A and Ap3A attenuated the effect of isoproterenol, exerting a negative inotropic effect. The calcium current of guinea pig ventricular myocytes, stimulated by isoproterenol, was also attenuated by Ap2A and Ap3A. The presence of Ap2A and Ap3A in cardiac-specific granules and the actions of these substances on the myocardium and coronary vessels indicate a role for these substances as endogenous modulators of myocardial functions and coronary perfusion.  (+info)

CpG-containing oligonucleotides are efficient adjuvants for induction of protective antiviral immune responses with T-cell peptide vaccines. (7/945)

Synthetic nonmethylated oligonucleotides containing CpG dinucleotides (CpG-ODNs) have been shown to exhibit immunostimulatory activity. CpG-ODNs have the capacity to directly activate B cells, macrophages, and dendritic cells, and we show here that this is reflected by cell surface binding of oligonucleotides to these cell subsets. However, T cells are not directly activated by CpG-ODNs, which correlates with the failure to bind to the T-cell surface. Efficient competition for CpG-induced B-cell activation by non-CpG-containing oligonucleotides suggests that oligonucleotides might bind to an as yet undefined sequence-nonspecific receptor prior to cellular activation. Induction of protective T-cell responses against challenge infection with lymphocytic choriomeningitis virus (LCMV) or with recombinant vaccinia virus expressing the LCMV glycoprotein was achieved by immunizing mice with the immunodominant major histocompatibility complex class I-binding LCMV glycoprotein-derived peptide gp33 together with CpG-ODNs. In these experiments, B cells, potentially serving as CpG-ODN-activated antigen-presenting cells (APCs), were not required for induction of protective immunity since CpG-ODN-gp33-immunized B-cell-deficient mice were equally protected against challenge infection with both viruses. This finding suggested that macrophages and/or dendritic cells were sufficiently activated in vivo by CpG-ODNs to serve as potent APCs for the induction of naive T cells. Furthermore, treatment with CpG-ODN alone induced protection against infection with Listeria monocytogenes via antigen-independent activation of macrophages. These data suggest that CpG activation of macrophages and dendritic cells may provide a critical step in CpG-ODN adjuvant activity.  (+info)

T4 RNA ligase catalyzes the synthesis of dinucleoside polyphosphates. (8/945)

T4 RNA ligase has been shown to synthesize nucleoside and dinucleoside 5'-polyphosphates by displacement of the AMP from the E-AMP complex with polyphosphates and nucleoside diphosphates and triphosphates. Displacement of the AMP by tripolyphosphate (P3) was concentration dependent, as measured by SDS/PAGE. When the enzyme was incubated in the presence of 0.02 mm [alpha-32P] ATP, synthesis of labeled Ap4A was observed: ATP was acting as both donor (Km, microm) and acceptor (Km, mm) of AMP from the enzyme. Whereas, as previously known, ATP or dATP (but not other nucleotides) were able to form the E-AMP complex, the specificity of a compound to be acceptor of AMP from the E-AMP complex was very broad, and with Km values between 1 and 2 mm. In the presence of a low concentration (0.02 mm) of [alpha-32P] ATP (enough to form the E-AMP complex, but only marginally enough to form Ap4A) and 4 mm of the indicated nucleotides or P3, the relative rate of synthesis of the following radioactive (di)nucleotides was observed: Ap4X (from XTP, 100); Ap4dG (from dGTP, 74); Ap4G (from GTP, 49); Ap4dC (from dCTP, 23); Ap4C (from CTP, 9); Ap3A (from ADP, 5); Ap4ddA, (from ddATP, 1); p4A (from P3, 200). The enzyme also synthesized efficiently Ap3A in the presence of 1 mm ATP and 2 mm ADP. The following T4 RNA ligase donors were inhibitors of the synthesis of Ap4G: pCp > pAp > pA2'p.  (+info)