N-dansyl-S-nitrosohomocysteine a fluorescent probe for intracellular thiols and S-nitrosothiols. (1/291)

The fluorescence emission spectrum of N-dansyl-S-nitrosohomocysteine was enhanced approximately 8-fold upon removal of the NO group either by photolysis or by transnitrosation with free thiols like glutathione. The fluorescence enhancement was reversible in that it could be quenched in the presence of excess S-nitrosoglutathione. Attempts were then made to utilize N-dansyl-S-nitrosohomocysteine as an intracellular probe of thiols/S-nitrosothiols. Fluorescence microscopy of fibroblasts in culture indicated that intracellular N-dansyl-S-nitrosohomocysteine levels reached a maximum within 5 min. N-Dansyl-S-nitrosohomocysteine fluorescence was directly proportional to intracellular GSH levels, directly determined with HPLC. N-Dansyl-S-nitrosohomocysteine preloaded cells were also sensitive to S-nitrosoglutathione uptake as the intracellular fluorescence decreased as a function of time upon exposure to extracellular S-nitrosoglutathione.  (+info)

Developmental aspects of glutathione S-transferase B (ligandin) in rat liver. (2/291)

The postnatal development in male Sprague-Dawley rats of hepatic glutathione S-transferase B (ligandin) in relation to the other glutathione S-transferases is described. The concentration of glutathione S-transferase B in 1-day-old male rats is about one-fifth of that in adult animals. The enzyme reaches adult concentrations 4-5 weeks later. When assessed by substrate specificity or immunologically, the proportion of transferase B relative to the other glutathione S-transferases is high during the first week after birth. At this age, 67.5% of the transferase activity towards 1-chloro-2,4-dinitrobenzene is immunoprecipitable by anti-(transferase B), compared with about 50% in adults and older pups. Between the second and the fifth postnatal week, the fraction of transferase B increases in parallel fashion with the other transferases in hepatic cytosol. Neither L-thyroxine nor cortisol induce a precocious increase in glutathione S-transferase activity. Phenobarbital did induce transferase activity towards 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene in both pups and adults. The extent of induction by phenobarbital was a function of basal activity during development such that the percentage stimulation remained constant from 5 days postnatally to adulthood.  (+info)

Inhibition of allergic contact dermatitis to DNCB but not to oxazolone in interleukin-4-deficient mice. (3/291)

The role of interleukin-4 as a regulator of immune responses in the skin is investigated with regard to the outcome of contact hypersensitivity reaction in interleukin-4-deficient BALB/C mice. In previous studies conflicting results were obtained concerning the role of interleukin-4 in contact hypersensitivity reactions supporting either a proinflammatory or rather an inhibitory function of this cytokine. Interleukin-4 deficient BALB/C mice sensitized to 2,4-dinitrochlorobenzene showed after challenge a significant reduction in magnitude and duration of the contact hypersensitivity response in comparison with wild-type mice. This attenuation was accompanied by a significant reduction of edema and cellular infiltrates in the dermis and a lacking induction of IL-10 mRNA expression in skin. Also, adoptive transfer experiments revealed that BALB/C mice failed to exhibit contact hypersensitivity after injection of lymph node cells obtained from sensitized interleukin-4 deficient mice. To examine further the role of the contact allergen used to induce the contact hypersensitivity response, mice were also sensitized and challenged with Oxazolone. Here a similar magnitude and duration of contact hypersensitivity in both the interleukin-4 deficient mice and BALB/C control mice was observed. This indicates that the contact hypersensitivity response to 2,4-dinitrochlorobenzene and Oxazolone may partly evolve on different pathways being dependent and independent of interleukin-4. Our results clearly show that the complete loss of endogenous interleukin-4 expression in BALB/C mice is associated with an impaired manifestation of contact hypersensitivity response to 2,4-dinitrochlorobenzene, implying an important proinflammatory function of this cytokine.  (+info)

Reduced glutathione accelerates the oxidative damage produced by sodium n-propylthiosulfate, one of the causative agents of onion-induced hemolytic anemia in dogs. (4/291)

The oxidative effects of sodium n-propylthiosulfate, one of the causative agents of onion-induced hemolytic anemia in dogs, were investigated in vitro using three types of canine erythrocytes, which are differentiated by the concentration of reduced glutathione and the composition of intracellular cations. After incubation with sodium n-propylthiosulfate, the methemoglobin concentration and Heinz body count in all three types of erythrocytes increased and a decrease in the erythrocyte reduced glutathione concentration was then observed. The erythrocytes containing high concentrations of potassium and reduced glutathione (approximately five times the normal values) were more susceptible to oxidative damage by sodium n-propylthiosulfate than were the normal canine erythrocytes. The susceptibility of the erythrocytes containing high potassium and normal reduced glutathione concentrations was intermediate between those of erythrocytes containing high concentrations of potassium and reduced glutathione and normal canine erythrocytes. In addition, the depletion of erythrocyte reduced glutathione by 1-chloro-2, 4-dinitrobenzene resulted in a marked decrease in the oxidative injury induced by sodium n-propylthiosulfate in erythrocytes containing high concentrations of potassium and reduced glutathione. The generation of superoxide in erythrocytes containing high concentrations of potassium and reduced glutathione was 4.1 times higher than that in normal canine erythrocytes when the cells were incubated with sodium n-propylthiosulfate. These observations indicate that erythrocyte reduced glutathione, which is known as an antioxidant, accelerates the oxidative damage produced by sodium n-propylthiosulfate.  (+info)

Studies on the role of suppressor cells in specific unresponsiveness to DNCB. (5/291)

Lymph nodes--and to a lesser extent spleen cells--from guinea-pigs tolerant to DNCB contact sensitivity, when injected into normal syngeneic guinea-pigs, decrease the ability of the recipients to become sensitized to contact with DNCB. The difference between the complete tolerance transferred by parabiosis with tolerant partners and the partial tolerance induced by transfer of tolerant cells can be explained by the different numbers of cells homing in the recipients. The tolergen does not play any role in the transfer of tolerance.  (+info)

A quantitative comparison of induction and challenge concentrations inducing a 50% positive response in three skin sensitization tests; the guinea pig maximization test, adjuvant and patch test and Buehler test. (6/291)

The sensitivities of three skin sensitization tests such as the Guinea pig maximization test (GPMT), Adjuvant and patch test (APT) and Buehler test (BT), were quantitatively compared with reference to induction and challenge concentrations. Four chemical which had different physico-chemical properties (octanol-water partition coefficient (logP) and reactivity with NH2-group) were used in order to clarify the effect of the physico-chemical properties of chemicals on the sensitivity of the different methods. The induction concentrations inducing a 50% positive response (IC50) demonstrated extreme variation with the three methods. For example, the BT/GPMT ratio of IC50 values for 2,4-dinitrochlorobenzene was 33, whereas that for maleic anhydride was 300,000. The results were thought to be caused by difference properties such as the logP and reactivity of chemicals. This correlation was confirmed by using 2-dodecen-1-yl succinic anhydride, which had the same reactivity but higher logP than that of maleic anhydride. On the other hand, the challenge concentrations inducing 50% positive responses (CC50) were less affected by the methods and the BT/GPMT ratios for CC50 values were all within a 10-fold range. These results suggest that the sensitivity might be strongly different with reference to induction concentration, but not challenge concentration among the three methods.  (+info)

Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. (7/291)

The intracellular generation of reactive oxygen species, together with the thioredoxin and glutathione systems, is thought to participate in redox signaling in mammalian cells. The activity of thioredoxin is dependent on the redox status of thioredoxin reductase (TR), the activity of which in turn is dependent on a selenocysteine residue. Two mammalian TR isozymes (TR2 and TR3), in addition to that previously characterized (TR1), have now been identified in humans and mice. All three TR isozymes contain a selenocysteine residue that is located in the penultimate position at the carboxyl terminus and which is encoded by a UGA codon. The generation of reactive oxygen species in a human carcinoma cell line was shown to result in both the oxidation of the selenocysteine in TR1 and a subsequent increase in the expression of this enzyme. These observations identify the carboxyl-terminal selenocysteine of TR1 as a cellular redox sensor and support an essential role for mammalian TR isozymes in redox-regulated cell signaling.  (+info)

The role of tyrosine-9 and the C-terminal helix in the catalytic mechanism of Alpha-class glutathione S-transferases. (8/291)

Glutathione S-transferases (GSTs) play a key role in the metabolism of drugs and xenobiotics. To investigate the catalytic mechanism, substrate binding and catalysis by the wild-type and two mutants of GST A1-1 have been studied. Substitution of the 'essential' Tyr(9) by phenylalanine leads to a marked decrease in the k(cat) for 1-chloro-2,4-dinitrobenzene (CDNB), but has no affect on k(cat) for ethacrynic acid. Similarly, removal of the C-terminal helix by truncation of the enzyme at residue 209 leads to a decrease in k(cat) for CDNB, but an increase in k(cat) for ethacrynic acid. The binding of a GSH analogue increases the affinity of the wild-type enzyme for CDNB, and increases the rate of the enzyme-catalysed conjugation of this substrate with the small thiols 2-mercaptoethanol and dithiothreitol. This suggests that GSH binding produces a conformational change which is transmitted to the binding site for the hydrophobic substrate, where it alters both the affinity for the substrate and the catalytic-centre activity ('turnover number') for conjugation, perhaps by increasing the proportion of the substrate bound productively. Neither of these two effects of GSH analogues are seen in the C-terminally truncated enzyme, indicating a role for the C-terminal helix in the GSH-induced conformational change.  (+info)