The CTLA-4 gene is expressed in placental fibroblasts. (1/1386)

In order to elucidate the mechanisms that ensure survival of the allogeneic fetus, we are investigating the expression pattern of genes that are involved in peripheral self-tolerance in tissues at the maternal-fetal interface. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a negative regulator of T cell activation and may modulate peripheral self-tolerance. Previously, we reported the preferential transmission of maternally-inherited shorter alleles at a 3'-UTR microsatellite locus to liveborn children, but random transmission of paternally-inherited alleles, suggesting that CTLA-4 may be involved in the maintenance of tolerance at the maternal-fetal interface. In this report, we demonstrate that CTLA-4 mRNA and protein are indeed expressed in fetal tissues at the maternal-fetal interface throughout gestation.  (+info)

Cellular and molecular characterization of the scurfy mouse mutant. (2/1386)

Mice hemizygous (Xsf/Y) for the X-linked mutation scurfy (sf) develop a severe and rapidly fatal lymphoproliferative disease mediated by CD4+CD8- T lymphocytes. We have undertaken phenotypic and functional studies to more accurately identify the immunologic pathway(s) affected by this important mutation. Flow cytometric analyses of lymphoid cell populations reveal that scurfy syndrome is characterized by changes in several phenotypic parameters, including an increase in Mac-1+ cells and a decrease in B220+ cells, changes that may result from the production of extremely high levels of the cytokine granulocyte-macrophage CSF by scurfy T cells. Scurfy T cells also exhibit strong up-regulation of cell surface Ags indicative of in vivo activation, including CD69, CD25, CD80, and CD86. Both scurfy and normal T cells are responsive to two distinct signals provided by the TCR and by ligation of CD28; scurfy cells, however, are hyperresponsive to TCR ligation and exhibit a decreased requirement for costimulation through CD28 relative to normal controls. This hypersensitivity may result, in part, from increased costimulation through B7-1 and B7-2, whose expression is up-regulated on scurfy T cells. Although the specific defect leading to this hyperactivation has not been identified, we also demonstrate that scurfy T cells are less sensitive than normal controls to inhibitors of tyrosine kinases such as genistein and herbimycin A, and the immunosuppressant cyclosporin A. One interpretation of our data would suggest that the scurfy mutation results in a defect, which interferes with the normal down-regulation of T cell activation.  (+info)

Experimental murine schistosomiasis in the absence of B7 costimulatory molecules: reversal of elicited T cell cytokine profile and partial inhibition of egg granuloma formation. (3/1386)

The granulomatous inflammation in infection with the helminth Schistosoma mansoni represents a cellular hypersensitivity reaction mediated by, and dependent upon, MHC class II-restricted CD4+ Th cells sensitized to parasite egg Ags. The current work examines the role and significance of the B7:CD28/CTLA-4 pathway in providing the costimulation necessary for the activation of these pathogenic T cells. In vitro T cell responses in B7-1-/- mice, 7-8 wk postinfection, were no different from wild-type controls, but the absence of B7-2 molecules resulted in a decrease in egg Ag-induced proliferation with increased IFN-gamma production. Both B7-1-/- and B7-2-/- mice exhibited intact granuloma formation. In contrast, CD4+ Th cells from B7-1/2 double-deficient mice displayed a dramatic loss of proliferative capacity upon stimulation with egg Ag. Most strikingly, these T cells secreted only IFN-gamma, but not IL-4 and IL-10, a pattern entirely opposite to that displayed by wild-type controls. Despite these major differences in T cell reactivity, B7-1/2-/- mice had only a limited reduction of granuloma size and fibrosis, without appreciable difference in cellular composition. These results show that substantial granuloma formation can occur under conditions of limited T cell expansion and restricted Th1-type cytokine production. They also support the notion that the combined effect of B7 signaling is not as critical for Th1 cell activation as it is for the development of the Th2 dominant environment characteristic of the evolving schistosome infection in H-2b mice.  (+info)

Prevention of autoimmune recurrence and rejection by adenovirus-mediated CTLA4Ig gene transfer to the pancreatic graft in BB rat. (4/1386)

Type 1 diabetes is the result of a selective destruction of pancreatic islets by autoreactive T-cells. Therefore, in the context of islet or pancreas transplantation, newly transplanted beta-cells are threatened by both recurrent autoimmune and alloimmune responses in recipients with type 1 diabetes. In the present study, using spontaneously diabetic BB rats, we demonstrate that whereas isolated islets are susceptible to autoimmune recurrence and rejection, pancreaticoduodenal grafts are resistant to these biological processes. This resistance is mediated by lymphohematopoietic cells transplanted with the graft, since inactivation of these passenger cells by irradiation uniformly rendered the pancreaticoduodenal grafts susceptible to recurrent autoimmunity. We further studied the impact of local immunomodulation on autoimmune recurrence and rejection by ex vivo adenovirus-mediated CTLA4Ig gene transfer to pancreaticoduodenal grafts. Syngeneic DR-BB pancreaticoduodenal grafts transduced with AdmCTLA4Ig were rescued from recurrent autoimmunity. In fully histoincompatible LEW-->BB transplants, in which rejection and recurrence should be able to act synergistically, AdmCTLA4Ig transduced LEW-pancreaticoduodenal allografts enjoyed markedly prolonged survival in diabetic BB recipients. In situ reverse transcription-polymerase chain reaction revealed that transferred CTLA4Ig gene was strongly expressed in both endocrine and exocrine tissues on day 3. These results indicate the potential utility of local CD28-B7 costimulatory blockade for prevention of alloimmune and autoimmune destruction of pancreatic grafts in type 1 diabetic hosts.  (+info)

Phenotypic analysis of lymphocytes and monocytes/macrophages in peripheral blood and bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. (5/1386)

BACKGROUND: The granulomatous inflammation in sarcoidosis is driven by the interplay between T cells and macrophages. To gain a better understanding of this process the expression by these cells of cell surface activation markers, co-stimulatory molecules, and adhesion molecules was analysed. METHODS: CD4+ and CD8+ T lymphocytes from peripheral blood (PBL) or bronchoalveolar lavage (BAL) fluid, as well as paired peripheral blood monocytes and alveolar macrophages from 27 patients with sarcoidosis were analysed by flow cytometry. RESULTS: CD26, CD54, CD69, CD95, and gp240 were all overexpressed in T cells from BAL fluid compared with those from PBL in both the CD4+ and CD8+ subsets, while CD57 was overexpressed only in BAL CD4+ cells. In contrast, CD28 tended to be underexpressed in the BAL T cells. Monocyte/macrophage markers included CD11a, CD11b, CD11c, CD14, CD16, CD54, CD71, CD80 and CD86 and HLA class II. CD11a expression in alveolar macrophages (and peripheral blood monocytes) was increased in patients with active disease and correlated positively with the percentage of BAL lymphocytes. Expression of CD80 in macrophages correlated with the BAL CD4/CD8 ratio. CONCLUSIONS: Our data indicate substantial activation of both CD4+ and CD8+ lung T cells in sarcoidosis. There were also increased numbers of BAL lymphocytes whose phenotypic characteristics have earlier been associated with clonally expanded, replicatively senescent cells of the Th1 type.  (+info)

The role of CTLA-4 in the regulation of T cell immune responses. (6/1386)

Over the past few years a great deal of research has examined how T cell-dependent immune responses are initiated and subsequently regulated. Ligation of the TCR with an antigenic peptide bound to an MHC protein on a professional APC provides the crucial antigen-specific stimulus required for T cell activation. Interaction of CD28 with CD80 or CD86 molecules on APC initiates a costimulatory or second signal within the T cell which augments and sustains T cell activation initiated through the TCR. However, recently it has become clear that T cell immune responses are a result of a balance between stimulatory and inhibitory signals. Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4) is a cell surface molecule that is expressed nearly exclusively on CD4+ and CD8+ T cells. Investigation into the role of CTLA-4 in the regulation of T cell immune responses has revealed that CTLA-4 is a very important molecule involved in the maintenance of T cell homeostasis. In the present review, evidence for the proposed inhibitory role of CTLA-4 is examined and a model suggesting a role for CTLA-4 in both early and late stages of T cell activation is presented.  (+info)

CTLA-4 gene polymorphism is associated with predisposition to coeliac disease. (7/1386)

BACKGROUND: Susceptibility to coeliac disease is strongly associated with particular HLA class II alleles. However, non-HLA genetic factors are likely to be required for the development of the disease. Among candidate genes is the CTLA-4 (cytotoxic T lymphocyte associated) gene located on chromosome 2q33 in humans, which encodes a cell surface molecule providing a negative signal for T cell activation. AIMS: To investigate CTLA-4 exon 1 polymorphism (position 49 A/G) in patients with coeliac disease. PATIENTS: 101 patients with coeliac disease and 130 healthy controls. METHODS: Allele specific hybridisation and restriction enzyme digestion of polymerase chain reaction amplified genomic DNA. RESULTS: The A allele of the CTLA-4 position 49 polymorphism was found on 82.2% of chromosomes in patients with coeliac disease compared with 65.8% in controls (p < 0.0001), mostly in the homozygous form (68.3% in patients versus 47.7% in controls; odds ratio (OR) 2.36, 95% confidence interval (CI) 1.37 to 4.06, p = 0.002). Four patients only had the G/G genotype compared with 21 controls (OR 0.21, CI 10.07 to 0.64, p = 0.002). These differences were maintained when subjects were stratified according to the HLA class II phenotype, in particular when patients and controls were matched for the presence of the predisposing HLA DQB1*02 (DQ2) allele or HLA-DQA1*0501/DQB1*02 heterodimer. CONCLUSION: The CTLA-4 gene polymorphism is a non-HLA determinant that predisposes to coeliac disease. Whether it directly contributes to disease susceptibility or represents a marker for a locus in linkage disequilibrium with CTLA-4 needs further investigation.  (+info)

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) can regulate dendritic cell-induced activation and cytotoxicity of CD8(+) T cells independently of CD4(+) T cell help. (8/1386)

The mechanisms that regulate the strength and duration of CD8(+) cytotoxic T cell activity determine the effectiveness of an antitumor immune response. To better understand the antitumor effects of anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibody treatment, we analyzed the effect of CTLA-4 signaling on CD8(+) T cells in vitro and in vivo. In vitro, cross-linking of CTLA-4 on purified CD8(+) T cells caused decreased proliferative responses to anti-CD3 stimulation and rapid loss of activation marker expression. In vivo, blockade of CTLA-4 by neutralizing anti-CTLA-4 mAb greatly enhanced the accumulation, activation, and cytotoxic activity of CD8(+) T cells induced by immunization with Ag on dendritic cells (DC). This enhanced response did not require the expression of MHC class II molecules on DC or the presence of CD4(+) T cells. These results demonstrate that CTLA-4 blockade is able to directly enhance the proliferation and activation of specific CD8(+) T cells, indicating its potential for tumor immunotherapy even in situations in which CD4(+) T cell help is limited or absent.  (+info)