Molecular and phylogenetic analyses of 16 novel simian T cell leukemia virus type 1 from Africa: close relationship of STLV-1 from Allenopithecus nigroviridis to HTLV-1 subtype B strains. (1/28)

A serological survey searching for antibodies reacting with human T-cell leukemia virus type 1 (HTLV-1) antigens was performed on a series of 263 sera/plasma obtained from 34 monkey species or subspecies, originating from different parts of Africa. Among them, 34 samples exhibited a typical HTLV-1 Western blot pattern. Polymerase chain reaction was performed with three primer sets specific either to HTLV-1/STLV-1 or HTLV-2 and encompassing gag, pol, and tax sequences, on genomic DNA from peripheral blood mononuclear cells of 31 animals. The presence of HTLV-1/simian T-cell leukemia virus type 1 (STLV-1) related viruses was determined in the 21 HTLV-1 seropositive animals tested but not in the 10 HTLV-1 seronegative individuals. Proviral DNA sequences from the complete LTR (750 bp) and a portion of the env gene (522 bp) were determined for 16 new STLV-1 strains; some of them originating from species for which no STLV-1 molecular data were available as Allenopithecus nigroviridis and Cercopithecus nictitans. Comparative and phylogenetic analyses revealed that these 16 new sequences belong to five different molecular groups. The A. nigroviridis STLV-1 strains exhibited a very strong nucleotide similarity with HTLV-1 of the subtype B. Furthermore, four novel STLV-1, found in Cercocebus torquatus, C. m. mona, C. nictitans, and Chlorocebus aethipos, were identical to each other and to a previously described Papio anubis STLV-1 strain (PAN 503) originating from the same primate center in Cameroon. Our data extend the range of the African primates who could be permissive and/or harbor naturally STLV-1 and provide new evidences of cross-transmission of African STLV-1 between different monkey species living in the same environment and also of STLV-1 transmissions from some monkeys to humans in Central Africa.  (+info)

Molecular phylogeny and proposed classification of the simian picornaviruses. (2/28)

The simian picornaviruses were isolated from various primate tissues during the development of general tissue culture methods in the 1950s to 1970s or from specimens derived from primates used in biomedical research. Twenty simian picornavirus serotypes are recognized, and all are presently classified within the Enterovirus genus. To determine the phylogenetic relationships among all of the simian picornaviruses and to evaluate their classification, we have determined complete VP1 sequences for 19 of the 20 serotypes. Phylogenetic analysis showed that A13, SV19, SV26, SV35, SV43, and SV46 are members of human enterovirus species A, a group that contains enterovirus 71 and 11 of the coxsackie A viruses. SA5 is a member of human enterovirus species B, which contains the echoviruses, coxsackie B viruses, coxsackievirus A9, and enterovirus 69. SV6, N125, and N203 are related to one another and, more distantly, to species A human enteroviruses, but could not be definitely assigned to a species. SV4 and SV28 are closely related to one another and to A-2 plaque virus, but distinct from other enteroviruses, suggesting that these simian viruses are members of a new enterovirus species. SV2, SV16, SV18, SV42, SV44, SV45, and SV49 are related to one another but distinct from viruses in all other picornavirus genera, suggesting that they may comprise a previously unknown genus in Picornaviridae. Several simian virus VP1 sequences (N125 and N203; SV4 and SV28; SV19, SV26, and SV35; SV18 and SV44; SV16, SV42, and SV45) are greater than 75% identical to one another (and/or greater than 85% amino acid identity), suggesting that the true number of distinct serotypes among the viruses surveyed is less than 20.  (+info)

Identification of two novel primate-specific genes in DSCR. (3/28)

We recently helped to complete the sequence of human chromosome 21 at a very high level of accuracy. Using this sequence we identified two novel genes, designated DSCR9 and DSCR10, in the so-called Down Syndrome Critical Region (DSCR) by computational gene prediction and subsequent cDNA cloning. Both DSCR9 and DSCR10 are expressed preferentially in testis and encode functionally unknown proteins with 149 and 87 amino acid residues, respectively. Zoo blot analysis suggested that both genes are exclusive to primate genomes such as chimpanzee, gorilla, orangutan, crab-eating monkey and African green monkey but are not present in other non-primate mammals including mouse, dog, cat, and chicken. Comparative genomic sequence analysis of DSCR9 and DSCR10 with the corresponding mouse syntenic region confirmed the lack of these genes in the mouse. These results strongly suggest that DSCR9 and DSCR10 have emerged as a new class of gene in the primate lineage during evolution.  (+info)

Detection of simian immunodeficiency virus in diverse species and of human immunodeficiency virus Type 2 by using consensus primers within the pol region. (4/28)

Human immunodeficiency virus type 2 (HIV-2) is the result of cross-species transmission of simian immunodeficiency virus (SIV) from sooty mangabey monkeys to humans. Primer pairs (intHIV-2/SIV) based on a region of integrase that has considerable homology across HIV-2 and SIV lineages were designed to develop a broadly cross-reactive molecular assay to detect lentivirus infection in primates. The intHIV-2/SIV primers detect HIV-2 and simian viruses SIVcpz, SIVsmm, SIVsyk, SIVagm, and SIVmnd. The primers are also capable of amplifying some HIV-1 strains. Additionally, sequences from the integrase amplicons were of sufficient genetic diversity to permit not only phylogenetic clustering of all simian viruses to their respective lineages but also HIV type and group classification. Thus, the primers described here provide a method to detect primate lentiviruses from diverse species of nonhuman primates, as well as from persons infected with HIV-1 and HIV-2.  (+info)

Adaptive and phylogenetic influences on musculoskeletal design in cercopithecine primates. (5/28)

Broad allometric studies of the musculoskeletal system have frequently sought to explain how locomotor variables have been influenced by body mass. To examine animals that vary widely in body mass, these studies have included taxa that differ in their locomotor adaptations and phylogenetic relatedness. Because these sources of diversity could obscure the effects of body mass, this study was designed to test the effects of adaptive differences in limb proportions and phylogeny, as well as body mass, on locomotor kinematics and extensor muscle mechanical advantage. More specifically, two hypotheses were tested in a sample of closely related animals: (i) that, among animals with similar body mass, those with longer limb segments should adopt more extended limb postures to moderate the joint and midshaft bending moments that they experience, and (ii) that body mass will have similar influences on joint posture and joint moments in closely related and diverse mammalian samples. Three-dimensional kinematic and synchronous force-platform data were collected for six individual cercopithecine monkeys ranging in mass from 4kg to 24kg and at a range of walking speeds. Comparisons among three monkeys with similar body mass but different limb segment lengths reveal a significant effect of limb proportion on posture. That is, animals with longer limbs frequently use more extended limb postures and can have correspondingly lower joint moments. The scaling of locomotor variables across the entire sample of closely related monkeys was generally similar to published results for a diverse sample of mammals, with larger monkeys having more extended limb postures, lower joint moments and greater effective mechanical advantage (EMA) for their limb extensor musculature. Ankle EMA, however, did not increase with body mass in the primate sample, suggesting that clade-specific adaptive differences (e.g. the use of arboreal supports by primates) may constrain the effects of body mass.  (+info)

Porcine endogenous retrovirus infects but does not replicate in nonhuman primate primary cells and cell lines. (6/28)

Porcine endogenous retroviruses (PERV) can infect human cell lines in vitro; hence, there is a presumed risk of viral exposure to a recipient when pig cells are transplanted into humans (xenotransplantation). Nonhuman primates (NHP) are considered a potential permissive animal model to study the risk of in vivo infection of PERV after xenotransplantation. We set out to determine whether PERV can infect and replicate in NHP primary cells or established cell lines from African green monkey, rhesus macaque, and baboon. We confirm that the NHP cell lines under investigation were infected with PERV as measured by detection of viral DNA and RNA by PCR and reverse transcription (RT)-PCR, respectively, indicating that a functional receptor must be present on the cell surface. However, the load of detectable viral DNA in infected NHP cells declined over time, and the cells never had detectable reverse transcriptase activity. Utilizing quantitative real-time TaqMan PCR we found detectable levels of unintegrated DNA intermediates, but the levels were approximately 100-fold lower compared to HEK 293 cells infected with PERV. Virions released from infected NHP cells could productively infect naive human cell lines, HEK 293 and HeLa, as shown by RT-PCR and RT assay. However, naive NHP cells remained negative in RT-PCR and RT assay after exposure to virions from infected NHP cells. Together our data demonstrate that NHP cells are not permissive to productive replication by PERV, presumably due to inefficient cell entry and replication. In light of these observations, the appropriateness of NHP as suitable animal models to study PERV infection in vivo needs to be reevaluated.  (+info)

Cranial allometry, phylogeography, and systematics of large-bodied papionins (primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. (7/28)

The cranial morphology of the African Old World monkeys Mandrillus, Papio, and Theropithecus (i.e., baboons) has been the subject of a number of studies investigating their systematic relationships, patterns of scaling, and growth. In this study, we use landmark-based geometric morphometrics and multivariate analysis to assess the effects of size, sex, taxonomy, and geographic location on cranial shape. Forty-five landmarks were digitized in three dimensions on 452 baboon crania and subjected to generalized Procrustes analysis (GPA), which standardizes geometric size but leaves scaling-based shape differences in the data. The resulting shape coordinates were submitted to regression analysis, principal components analysis (PCA), partial least-squares (PLS) analysis, and various clustering techniques. Scaling (shape differences correlated with size) was the largest single factor explaining cranial shape variation. For instance, most (but not all) of the shape differences between the sexes were explained by size dimorphism. However, central tendencies of shape clearly varied by taxon (both specific and subspecific) even after variations in size and sex were adjusted out. Within Papio, about 60% of the size- and sex-adjusted shape variations were explained by the geographic coordinates of the specimen's provenance, revealing a stepped cline in cranial morphology, with the greatest separation between northern and southern populations. Based on evidence from genetic studies, and the presence of at least two major hybrid/interbreeding zones, we interpret the phylogeographic pattern of cranial variation as indicating that these populations are best ranked as subspecies of a single species, rather than as two or more distinct biological species. This objective approach can be applied to other vertebrate species or species groups to help determine the taxonomic rank of problematic taxa.  (+info)

Genetic substructuring within Oesophagostomum bifurcum (Nematoda) from human and non-human primates from Ghana based on random amplified polymorphic DNA analysis. (8/28)

Random amplified polymorphic DNA (RAPD) was used to study genetic variation within Oesophagostomum bifurcum in Ghana. Four different decamer primers were used for the amplification of DNA from individual O. bifurcum adults (n = 41) from humans and non-human primates (including the Mona monkey, Patas monkey and Olive baboon) from different geographic regions. Analysis of the amplicons from all 41 nematodes by high resolution, denaturing polyacrylamide gel electrophoresis defined a total of 326 informative RAPD bands. Cluster analysis of the RAPD data (based on pairwise comparison of banding profiles) showed that O. bifurcum from humans was genetically distinct from O. bifurcum from the Mona and Patas monkeys, and from the Olive baboon. These findings clearly demonstrate the existence of population genetic substructuring within O. bifurcum from different primate hosts in Ghana, and raise interesting questions about host specificity, epidemiology (e.g., zoonotic transmission), and ecology of the different genotypes of O. bifurcum.  (+info)