Increased collagenase and dipeptidyl peptidase I activity in leucocytes from healthy elderly people. (1/128)

The incidence of infectious diseases increases with ageing. The enzymatic activity of leucocytes may have a relevant role in the morbidity and mortality due to infections in the elderly. In this study we have compared the activity of enzymes involved in the inflammatory response in leucocytes from young and elderly women. A total of 35 healthy females was studied, 20 volunteers aged 78-98 years (mean 89.1 years) and 15 young controls aged 19-34 years (mean 26 years). All of them were in good clinical condition, without any acute or chronic disease. Intracellular enzyme activity was analysed by flow cytometry in leucocytes from young and elderly women. The enzyme substrates employed were for oxidative burst, L-aminopeptidase, collagenase, cathepsin B, C, D and, G and dipeptidyl peptidase I. The intracellular enzyme activity assessed by flow cytometry in leucocytes from young and elderly women was similar, as far as oxidative burst, L-aminopeptidase, cathepsin B, C, D and G are concerned. An increased collagenase activity was detected in granulocytes from elders. The mean fluorescence channels for this enzyme corresponded to 86 +/- 23 and 60 +/- 15 in cells from elders and controls, respectively (P = 0.01224). An increased dipeptidyl peptidase I activity was detected in lymphocytes from elderly women. The corresponding values for this enzyme in elders and the young were 65.9 +/- 43.3 and 17.3 +/- 5, respectively (P = 0. 0036). The proper functional activity of intracellular enzymes involved in inflammatory responses is likely to be determinant for successful ageing.  (+info)

Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. (2/128)

Dipeptidyl peptidase I (DPPI) is a lysosomal cysteine protease that has been implicated in the processing of granzymes, which are neutral serine proteases exclusively expressed in the granules of activated cytotoxic lymphocytes. In this report, we show that cytotoxic lymphocytes derived from DPPI-/- mice contain normal amounts of granzymes A and B, but these molecules retain their prodipeptide domains and are inactive. Cytotoxic assays with DPPI-/- effector cells reveal severe defects in the induction of target cell apoptosis (as measured by [(125)I]UdR release) at both early and late time points; this defect is comparable to that detected in perforin-/- or granzyme A-/- x B-/- cytotoxic lymphocytes. DPPI therefore plays an essential role in the in vivo processing and activation of granzymes A and B, which are required for cytotoxic lymphocyte granule-mediated apoptosis.  (+info)

Location of the binding site for chloride ion activation of cathepsin C. (3/128)

Cathepsin C, a tetrameric lysosomal dipeptidyl-peptide hydrolase, is activated by chloride ion. The activation is shown here to be specific and pH-dependent, dissociation constants for chloride being lower at low pH. Bound chloride decreases the Km for the hydrolysis of chromophore labelled substrates without any significant change in Vmax, confirming its involvement in substrate binding. Determination of the kinetic parameters of chloride activation, using unlabelled substrates, has enabled its site of action to be located. The lower Km for the hydrolysis of simple amide substrates in the presence of Cl- shows that the S sites are involved. Possible involvement of the S' sites is excluded by the finding that the Km for the nucleophile in the transferase reaction is unaffected by chloride. The rates of inhibition by E-64 and iodoacetate are both chloride-dependent and, from the structure of the papain-E-64 complex, it is concluded that chloride binds close to the S2 site. The binding of guanidinium ion, a positively charged inhibitor, to the S site is dependent on chloride. Based on these results, a model is proposed to explain the chloride activation of cathepsin C. The possible physiological role of chloride in the regulation of proteolysis in the lysosome is discussed.  (+info)

Mutations of the cathepsin C gene are responsible for Papillon-Lefevre syndrome. (4/128)

Papillon-Lefevre syndrome (PLS) is an autosomal recessive disorder characterised by palmoplantar hyperkeratosis and severe early onset periodontitis that results in the premature loss of the primary and secondary dentitions. A major gene locus for PLS has been mapped to a 2.8 cM interval on chromosome 11q14. Correlation of physical and genetic maps of this interval indicate it includes at least 40 ESTs and six known genes including the lysosomal protease cathepsin C gene (CTSC). The CTSC message is expressed at high levels in a variety of immune cells including polymorphonuclear leucocytes, macrophages, and their precursors. By RT-PCR, we found CTSC is also expressed in epithelial regions commonly affected by PLS, including the palms, soles, knees, and oral keratinised gingiva. The 4.7 kb CTSC gene consists of two exons. Sequence analysis of CTSC from subjects affected with PLS from five consanguineous Turkish families identified four different mutations. An exon 1 nonsense mutation (856C-->T) introduces a premature stop codon at amino acid 286. Three exon 2 mutations were identified, including a single nucleotide deletion (2692delA) of codon 349 introducing a frameshift and premature termination codon, a 2 bp deletion (2673-2674delCT) that results in introduction of a stop codon at amino acid 343, and a G-->A substitution in codon 429 (2931G-->A) introducing a premature termination codon. All PLS patients were homozygous for cathepsin C mutations inherited from a common ancestor. Parents and sibs heterozygous for cathepsin C mutations do not show either the palmoplantar hyperkeratosis or severe early onset periodontitis characteristic of PLS. A more complete understanding of the functional physiology of cathepsin C carries significant implications for understanding normal and abnormal skin development and periodontal disease susceptibility.  (+info)

Haim-Munk syndrome and Papillon-Lefevre syndrome are allelic mutations in cathepsin C. (5/128)

Of the many palmoplantar keratoderma (PPK) conditions, only Papillon-Lefevre syndrome (PLS) and Haim-Munk syndrome (HMS) are associated with premature periodontal destruction. Although both PLS and HMS share the cardinal features of PPK and severe periodontitis, a number of additional findings are reported in HMS including arachnodactyly, acro-osteolysis, atrophic changes of the nails, and a radiographic deformity of the fingers. While PLS cases have been identified throughout the world, HMS has only been described among descendants of a religious isolate originally from Cochin, India. Parental consanguinity is a characteristic of many cases of both conditions. Although autosomal recessive transmission of PLS is evident, a more "complex" autosomal recessive pattern of inheritance with phenotypic influences from a closely linked modifying locus has been hypothesised for HMS. Recently, mutations of the cathepsin C gene have been identified as the underlying genetic defect in PLS. To determine if a cathepsin C mutation is also responsible for HMS, we sequenced the gene in affected and unaffected subjects from the Cochin isolate in which both the PLS and HMS phenotypes appear. Here we report identification of a mutation of cathepsin C (exon 6, 2127A--> G) that changes a highly conserved amino acid in the cathepsin C peptide. This mutation segregates with HMS in four nuclear families. Additionally, the existence of a shared common haplotype for genetic loci flanking the cathepsin C gene suggests that affected subjects descended from the Cochin isolate are homozygous for a mutation inherited "identical by descent" from a common ancestor. This finding supports simple autosomal recessive inheritance for HMS in these families. We also report a mutation of the same exon 6 CTSC codon (2126C-->T) in a Turkish family with classical PLS. These findings provide evidence that PLS and HMS are allelic variants of cathepsin C gene mutations.  (+info)

Localisation of a gene for prepubertal periodontitis to chromosome 11q14 and identification of a cathepsin C gene mutation. (6/128)

Prepubertal periodontitis (PPP) is a rare and rapidly progressive disease of young children that results in destruction of the periodontal support of the primary dentition. The condition may occur as part of a recognised syndrome or may occur as an isolated finding. Both autosomal dominant and recessive forms of Mendelian transmission have been reported for PPP. We report a consanguineous Jordanian family with four members affected by PPP in two nuclear sibships. The parents of the affected subjects are first cousins. We have localised a gene of major effect for PPP in this kindred (Zmax=3.55 for D11S901 at theta=0.00) to a 14 cM genetic interval on chromosome 11q14 flanked by D11S916 and D11S1367. This PPP candidate interval overlaps the region of chromosome 11q14 that contains the cathepsin C gene responsible for Papillon-Lefevre and Haim-Munk syndromes. Sequence analysis of the cathepsin C gene from PPP affected subjects from this Jordanian family indicated that all were homozygous for a missense mutation (1040A-->G) that changes a tyrosine to a cysteine. All four parents were heterozygous carriers of this Tyr347Cys cathepsin C mutation. None of the family members who were heterozygous carriers for this mutation showed any clinical findings of PPP. None of the 50 controls tested were found to have this Tyr347Cys mutation. This is the first reported gene mutation for non-syndromic periodontitis and shows that non-syndromic PPP is an allelic variant of the type IV palmoplantar ectodermal dysplasias.  (+info)

Arginine-based structures are specific inhibitors of cathepsin C. Application of peptide combinatorial libraries. (7/128)

Novel synthetic peptide inhibitors of lysosomal cysteine proteinase cathepsin C have been designed through the use of soluble peptide combinatorial libraries. The uncovered structural inhibitory module consists of the N-terminal cluster of L-arginine residues. Its modification with D-amino acids or arginine derivatives did not increase the inhibition strength. Inhibitory potency of oligoarginines improves with the elongation of peptide chain reaching a maximum for octa-L-arginine. The oligoarginines specifically interact with the cathepsin C active site as shown by competitive-type inhibition kinetics (Ki approximately 10-5 M) and intrinsic fluorescence measurements. The inhibitory interaction of oligoarginines is established through the specific spatial contact of a net of guanidino groups in the arginine side-chains, as indicated by comparison with inhibitory action of low molecular mass guanidine derivatives (Ki approximately 10-3 M). Nonarginine polyionic compounds cannot mimic the inhibitory effect of oligoarginines. The arginine-based peptide inhibitors were selective towards cathepsin C among other cysteine proteinases tested.  (+info)

Programming for cytotoxic effector function occurs concomitantly with CD4 extinction during CD8(+) T cell differentiation in the thymus. (8/128)

CD4(+) T cells are generally specialized to function as helper cells and CD8(+) T cells are generally specialized to function as cytotoxic effector cells. To explain how such concordance is achieved between co-receptor expression and immune function, we considered two possibilities. In one case, immature CD4(+)CD8(+) thymocyte precursors might first down-regulate expression of one co-receptor molecule, with the remaining co-receptor molecule subsequently activating the appropriate helper or cytotoxic functional program. Alternatively, we considered that the same intrathymic signals that selectively extinguished expression of one or the other co-receptor molecule might simultaneously initiate the appropriate helper or cytotoxic functional program. In the present study, we attempted to distinguish between these alternatives by examining thymocyte precursors of CD8(+) T cells for expression of Cathepsin C and Cathepsin W, molecules important for cytotoxic effector function. We report in developing thymocytes that Cathepsin C and Cathepsin W are expressed coordinately with extinction of CD4 co-receptor expression. We conclude that CD4 extinction and initiation of the cytotoxic functional program occurs simultaneously during differentiation of CD8(+) T cells in the thymus.  (+info)