Acetylcholine-induced membrane potential changes in endothelial cells of rabbit aortic valve. (1/485)

1. Using a microelectrode technique, acetylcholine (ACh)-induced membrane potential changes were characterized using various types of inhibitors of K+ and Cl- channels in rabbit aortic valve endothelial cells (RAVEC). 2. ACh produced transient then sustained membrane hyperpolarizations. Withdrawal of ACh evoked a transient depolarization. 3. High K+ blocked and low K+ potentiated the two ACh-induced hyperpolarizations. Charybdotoxin (ChTX) attenuated the ACh-induced transient and sustained hyperpolarizations; apamin inhibited only the sustained hyperpolarization. In the combined presence of ChTX and apamin, ACh produced a depolarization. 4. In Ca2+-free solution or in the presence of Co2+ or Ni2+, ACh produced a transient hyperpolarization followed by a depolarization. In BAPTA-AM-treated cells, ACh produced only a depolarization. 5. A low concentration of A23187 attenuated the ACh-induced transient, but not the sustained, hyperpolarization. In the presence of cyclopiazonic acid, the hyperpolarization induced by ACh was maintained after ACh removal; this maintained hyperpolarization was blocked by Co2+. 6. Both NPPB and hypertonic solution inhibited the membrane depolarization seen after ACh washout. Bumetanide also attenuated this depolarization. 7. It is concluded that in RAVEC, ACh produces a two-component hyperpolarization followed by a depolarization. It is suggested that ACh-induced Ca2+ release from the storage sites causes a transient hyperpolarization due to activation of ChTX-sensitive K+ channels and that ACh-activated Ca2+ influx causes a sustained hyperpolarization by activating both ChTX- and apamin-sensitive K+ channels. Both volume-sensitive Cl- channels and the Na+-K+-Cl- cotransporter probably contribute to the ACh-induced depolarization.  (+info)

Isosmotic modulation of Ca2+-regulated exocytosis in guinea-pig antral mucous cells: role of cell volume. (2/485)

1. Exocytotic events and changes of cell volume in mucous cells from guinea-pig antrum were examined by video-enhanced optical microscopy. 2. Acetylcholine (ACh) evoked exocytotic events following cell shrinkage, the frequency and extent of which depended on the ACh concentration. ACh actions were mimicked by ionomycin and thapsigargin, and inhibited by Ca2+-free solution and Ca2+ channel blockers (Ni2+, Cd2+ and nifedipine). Application of 100 microM W-7, a calmodulin inhibitor, also inhibited the ACh-induced exocytotic events. These results indicate that ACh actions are mediated by intracellular Ca2+ concentration ([Ca2+]i) in antral mucous cells. 3. The effects of ion channel blockers on exocytotic events and cell shrinkage evoked by ACh were examined. Inhibition of KCl release (quinine, Ba2+, NPPB or KCl solution) suppressed both the exocytotic events and cell shrinkage evoked by ACh. 4. Bumetanide (inhibition of NaCl entry) or Cl--free solution (increasing Cl- release and inhibition of NaCl entry) evoked exocytotic events following cell shrinkage in unstimulated antral mucous cells and caused further cell shrinkage and increases in the frequency of exocytotic events in ACh-stimulated cells. However, Cl--free solution did not evoke exocytotic events in unstimulated cells in the absence of extracellular Ca2+, although cell shrinkage occurred. 5. To examine the effects of cell volume on ACh-evoked exocytosis, the cell volume was altered by increasing the extracellular K+ concentration. The results showed that cell shrinkage increases the frequency of ACh-evoked exocytotic events and cell swelling decreases them. 6. Osmotic shrinkage or swelling caused the frequency of ACh-evoked exocytotic events to increase. This suggests that the effects of cell volume on ACh-evoked exocytosis under anisosmotic conditions may not be the same as those under isosmotic conditions. 7. In antral mucous cells, Ca2+-regulated exocytosis is modulated by cell shrinkage under isosmotic conditions.  (+info)

Isoforms of the Na-K-2Cl cotransporter in murine TAL II. Functional characterization and activation by cAMP. (3/485)

The functional properties of alternatively spliced isoforms of the mouse apical Na+-K+-2Cl- cotransporter (mBSC1) were examined, using expression in Xenopus oocytes and measurement of 22Na+ or 86Rb+ uptake. A total of six isoforms, generated by the combinatorial association of three 5' exon cassettes (A, B, and F) with two alternative 3' ends, are expressed in mouse thick ascending limb (TAL) [see companion article, D. B. Mount, A. Baekgaard, A. E. Hall, C. Plata, J. Xu, D. R. Beier, G. Gamba, and S. C. Hebert. Am. J. Physiol. 276 (Renal Physiol. 45): F347-F358, 1999]. The two 3' ends predict COOH-terminal cytoplasmic domains of 129 amino acids (the C4 COOH terminus) and 457 amino acids (the C9 terminus). The three C9 isoforms (mBSC1-A9/F9/B9) all express Na+-K+-2Cl- cotransport activity, whereas C4 isoforms are nonfunctional in Xenopus oocytes. Activation or inhibition of protein kinase A (PKA) does not affect the activity of the C9 isoforms. The coinjection of mBSC1-A4 with mBSC1-F9 reduces tracer uptake, compared with mBSC1-F9 alone, an effect of C4 isoforms that is partially reversed by the addition of cAMP-IBMX to the uptake medium. The inhibitory effect of C4 isoforms is a dose-dependent function of the alternatively spliced COOH terminus. Isoforms with a C4 COOH terminus thus exert a dominant negative effect on Na+-K+-2Cl- cotransport, a property that is reversed by the activation of PKA. This interaction between coexpressed COOH-terminal isoforms of mBSC1 may account for the regulation of Na+-K+-2Cl- cotransport in the mouse TAL by hormones that generate cAMP.  (+info)

UTP inhibits Na+ absorption in wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. (4/485)

Ca2+-mediated agonists, including UTP, are being developed for therapeutic use in cystic fibrosis (CF) based on their ability to modulate alternative Cl- conductances. As CF is also characterized by hyperabsorption of Na+, we determined the effect of mucosal UTP on transepithelial Na+ transport in primary cultures of human bronchial epithelia (HBE). In symmetrical NaCl, UTP induced an initial increase in short-circuit current (Isc) followed by a sustained inhibition. To differentiate between effects on Na+ absorption and Cl- secretion, Isc was measured in the absence of mucosal and serosal Cl- (INa). Again, mucosal UTP induced an initial increase and then a sustained decrease that reduced amiloride-sensitive INa by 73%. The Ca2+-dependent agonists histamine, bradykinin, serosal UTP, and thapsigargin similarly induced sustained inhibition (62-84%) of INa. Mucosal UTP induced similar sustained inhibition (half-maximal inhibitory concentration 296 nM) of INa in primary cultures of human CF airway homozygous for the DeltaF508 mutation. BAPTA-AM blunted UTP-dependent inhibition of INa, but inhibitors of protein kinase C (PKC) and phospholipase A2 had no effect. Indeed, direct activation of PKC by phorbol 12-myristate 13-acetate failed to inhibit Na+ absorption. Apyrase, a tri- and diphosphatase, did not reverse inhibitory effects of UTP on INa, suggesting a long-term inhibitory effect of UTP that is independent of receptor occupancy. After establishment of a mucosa-to-serosa K+ concentration gradient and permeabilization of the mucosal membrane with nystatin, mucosal UTP induced an initial increase in K+ current followed by a sustained inhibition. We conclude that increasing cellular Ca2+ induces a long-term inhibition of transepithelial Na+ transport across normal and CF HBE at least partly due to downregulation of a basolateral membrane K+ conductance. Thus UTP may have a dual therapeutic effect in CF airway: 1) stimulation of a Cl- secretory response and 2) inhibition of Na+ transport.  (+info)

Amino acids are compatible osmolytes for volume recovery after hypertonic shrinkage in vascular endothelial cells. (5/485)

The response to chronic hypertonic stress has been studied in human endothelial cells derived from saphenous veins. In complete growth medium the full recovery of cell volume requires several hours and is neither associated with an increase in cell K+ nor hindered by bumetanide but depends on an increased intracellular pool of amino acids. The highest increase is exhibited by neutral amino acid substrates of transport system A, such as glutamine and proline, and by the anionic amino acid glutamate. Transport system A is markedly stimulated on hypertonic stress, with an increase in activity roughly proportional to the extent and the duration of the osmotic shrinkage. Cycloheximide prevents the increase in transport activity of system A and the recovery of cell volume. It is concluded that human endothelial cells counteract hypertonic stress through the stimulation of transport system A and the consequent expansion of the intracellular amino acid pool.  (+info)

Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. (6/485)

Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous cell anion secretion. Forskolin-stimulated Calu-3 cells secrete HCO-3 by a Cl-offdependent, serosal Na+-dependent, serosal bumetanide-insensitive, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive, electrogenic mechanism as judged by transepithelial currents, isotopic fluxes, and the results of ion substitution, pharmacology, and pH studies. Similar studies revealed that stimulation of Calu-3 cells with 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of basolateral membrane Ca2+-activated K+ channels, reduced HCO-3 secretion and caused the secretion of Cl- by a bumetanide-sensitive, electrogenic mechanism. Nystatin permeabilization of Calu-3 monolayers demonstrated 1-EBIO activated a charybdotoxin- and clotrimazole- inhibited basolateral membrane K+ current. Patch-clamp studies confirmed the presence of an intermediate conductance inwardly rectified K+ channel with this pharmacological profile. We propose that hyperpolarization of the basolateral membrane voltage elicits a switch from HCO-3 secretion to Cl- secretion because the uptake of HCO-3 across the basolateral membrane is mediated by a 4,4 '-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive Na+:HCO-3 cotransporter. Since the stoichiometry reported for Na+:HCO-3 cotransport is 1:2 or 1:3, hyperpolarization of the basolateral membrane potential by 1-EBIO would inhibit HCO-3 entry and favor the secretion of Cl-. Therefore, differential regulation of the basolateral membrane K+ conductance by secretory agonists could provide a means of stimulating HCO-3 and Cl- secretion. In this context, cystic fibrosis transmembrane conductance regulator could serve as both a HCO-3 and a Cl- channel, mediating the apical membrane exit of either anion depending on basolateral membrane anion entry mechanisms and the driving forces that prevail. If these results with Calu-3 cells accurately reflect the transport properties of native submucosal gland serous cells, then HCO-3 secretion in the human airways warrants greater attention.  (+info)

Contributions of K+:Cl- cotransport and Na+/K+-ATPase to basolateral ion transport in malpighian tubules of Drosophila melanogaster. (7/485)

Mechanisms of Na+ and K+ transport across the basolateral membrane of isolated Malpighian tubules of Drosophila melanogaster were studied by examining the effects of ion substitution and putative inhibitors of specific ion transporters on fluid secretion rates, basolateral membrane potential and secreted fluid cation composition. Inhibition of fluid secretion by [(dihydroindenyl)oxy]alkanoic acid (DIOA) and bumetanide (10(-)4 mol l-1) suggested that a K+:Cl- cotransporter is the main route for K+ entry into the principal cells of the tubules. Differences in the effects of bumetanide on fluxes of K+ and Na+ are inconsistent with effects upon a basolateral Na+:K+:2Cl- cotransporter. Large differences in electrical potential across apical (>100 mV, lumen positive) and basolateral (<60 mV, cell negative) cell membranes suggest that a favourable electrochemical gradient for Cl- entry into the cell may be used to drive K+ into the cell against its electrochemical gradient, via a DIOA-sensitive K+:Cl- cotransporter. A Na+/K+-ATPase was also present in the basolateral membrane of the Malpighian tubules. Addition of 10(-)5 to 10(-)3 mol l-1 ouabain to unstimulated tubules depolarized the basolateral potential, increased the Na+ concentration of the secreted fluid by 50-73 % and increased the fluid secretion rate by 10-19 %, consistent with an increased availability of intracellular Na+. We suggest that an apical vacuolar-type H+-ATPase and a basolateral Na+/K+-ATPase are both stimulated by cyclic AMP. In cyclic-AMP-stimulated tubules, K+ entry is stimulated by the increase in the apical membrane potential, which drives K+:Cl- cotransport at a faster rate, and by the stimulation of the Na+/K+-ATPase. Fluid secretion by cyclic-AMP-stimulated tubules was reduced by 26 % in the presence of ouabain, suggesting that the Na+/K+-ATPase plays a minor role in K+ entry into the tubule cells. Malpighian tubules secreted a Na+-rich (150 mmol l-1) fluid at high rates when bathed in K+-free amino-acid-replete saline (AARS). Secretion in K+-free AARS was inhibited by amiloride and bafilomycin A1, but not by bumetanide or hydrochlorothiazide, which inhibit Na+:Cl- cotransport. There was no evidence for a Na+ conductance in the basolateral membrane of unstimulated or cyclic-AMP-stimulated tubules. Possible mechanisms of Na+ entry into the tubule cells include cotransport with organic solutes such as amino acids and glucose.  (+info)

Endothelial cell shrinkage increases permeability through a Ca2+-dependent pathway in single frog mesenteric microvessels. (8/485)

1. We tested whether calcium (Ca2+)-dependent mechanisms were essential for our previous observation that a change in the endothelial cell (EC)-extracellular matrix (ECM) attachment caused an increase in microvessel hydraulic permeability (Lp) after exposure to hypertonic solutions in single perfused mesenteric microvessels in pithed frogs (Rana pipiens). 2. In microvessels where integrin-dependent EC-ECM attachments were disrupted by pretreatment with the peptide Gly-Arg-Gly-Asp-Thr-Pro (GRGDTP; 0.3 mmol l-1), we measured microvessel Lp after exposure to hypertonic solutions under experimental conditions that reduced Ca2+ influx into endothelial cells. 3. High K+ solutions (59.7 and 100 mmol l-1 K+) were used to depolarize the endothelial membrane and therefore to reduce the electrochemical driving force for Ca2+ influx through conductive Ca2+ channels. These solutions abolished the increase in Lp caused by hypertonic solutions in the microvessels pretreated with GRGDTP. 4. We previously suggested that the removal of albumin from the perfusate may reduce EC-ECM attachment because hypertonic solutions increased the Lp of microvessels above that due to removal of albumin alone. This additional increase in Lp was attenuated by the 59.7 mmol l-1 K+ solution and was completely abolished by the 100 mmol l-1 K+ solution. 5. Bumetanide, an inhibitor of the Na+-K+-2Cl- co-transporter and one of the mechanisms of regulatory volume increase after exposure to hypertonic solutions in endothelial cells, did not change the response of microvessels to high K+ solutions. 6. Our findings indicate that Ca2+ entry into endothelial cells via passive conductance channels is necessary to increase microvessel Lp after exposure to hypertonic solutions in microvessels where EC-ECM attachments are disrupted.  (+info)