Passage of leptin across the blood-testis barrier. (1/152)

Leptin is a 17-kDa protein, secreted by fat, that controls adiposity and has been proposed to have numerous effects on reproduction in the mouse. To assess whether the effects of leptin on testicular function are direct, we determined whether leptin can cross the murine blood-testis barrier. Multiple time regression analysis showed that a small amount of blood-borne leptin is able to enter the testis but does so by a nonsaturable process. In addition, no significant expression of leptin receptors was found at the Leydig cells or Sertoli cells of the testis. This compares with the presence of a saturable transport system for leptin at the blood-brain barrier and abundant receptors for leptin at the leptomeninges, neurons, and choroid plexus of the central nervous system (CNS). These results support the hypothesis that the effects of leptin on reproductive function are not mediated at the level of the testis but indirectly, probably through the CNS.  (+info)

Evaluation of cholesteryl ester transfer in the seminiferous tubule cells of immature rats in vivo and in vitro. (2/152)

Sertoli cells and germ cells are separated from the interstitial blood capillaries by an extracellular matrix and the peritubular cells, which constitute a barrier to the movement of plasma lipoproteins. The present study was undertaken to evaluate in vivo and in vitro the high density lipoprotein (HDL) cholesteryl ester transfer from plasma to seminiferous tubule cells in the testis of 30-day-old rats. Firstly, the transfer of HDL cholesteryl oleate from plasma to testicular compartments was evaluated and, secondly, the role of apolipoproteins A-I and E in the uptake of cholesteryl ester by Sertoli cells was investigated. At 2 h after the administration of HDL reconstituted with [3H]cholesteryl ester, dimyristoyl phosphatidylcholine and apolipoproteins, the tissue space in the interstitial cells (740 +/- 60 microliters g-1 cell protein) was fourfold higher than that in the seminiferous tubule cells (170 +/- 10 microliters g-1). Sertoli cells were isolated and incubated with [3H]cholesteryl ester HDL reconstituted with apolipoprotein A-I or E to evaluate the mechanisms of cholesteryl ester influx. At the same apolipoprotein concentration (50 micrograms apolipoprotein ml-1 medium), the uptake of [3H]cholesteryl oleate from phospholipid-apolipoprotein E vesicles was twofold higher than that with phospholipid-apolipoprotein A-I vesicles. The presence of heparin reduced the uptake of cholesteryl ester from apolipoprotein E vesicles but not with apolipoprotein A-I vesicles, indicating that uptake of apolipoprotein A-I vesicles via a secretion of apolipoprotein E by the cells themselves was not involved. These results demonstrate that plasma lipoprotein cholesterol is able to cross the testis lamina propria and that Sertoli cells take up cholesteryl ester for seminiferous tubule cell metabolism mainly via an apolipoprotein E pathway.  (+info)

Passive immunization with anti-laminin immunoglobulin G modifies the integrity of the seminiferous epithelium and induces arrest of spermatogenesis in the guinea pig. (3/152)

In the testis, the base of the Sertoli cells is in contact with the basement membrane matrix, in which the laminins constitute the major noncollagenous components. We have previously demonstrated that antibodies against a preparation enriched in basement membranes of seminiferous tubules (STBM) or a noncollagenous fraction of STBM passively transferred induced modifications to the basement membranes and focal sloughing of the seminiferous epithelium in the rat. In the present report, we tested the effect of passive immunization with anti-laminin IgG on the limiting membrane of the seminiferous tubules, spermatogenesis, and maintenance of the blood-testis barrier in the adult guinea pig. Rabbit antibodies to laminin 1 (IgG fraction) were injected in adult male guinea pigs (GP). Nonimmunized GP and GP immunized with normal rabbit serum IgG were used as controls. Measurements of variations in the diameter and lumen of the tubules and in the size of individual components of the tubular limiting membrane showed that the highest percentage of tubules with reduced lumen occurred 30 days after passive immunization with anti-laminin, when the limiting membrane was thickest and lesions to the seminiferous epithelium were most severe. The lesions included thickening of the limiting membrane, infolding in the basal lamina, deposits of immune complexes coincident with sloughing of pachytene spermatocytes and spermatids, and vacuolization of the Sertoli cells. Mononuclear cell infiltration of the tubules was rare. Permeability tracer studies revealed that Sertoli cell tight junctions remained impermeable. Fifty and 80 days after treatment, the basement membrane of the tubules and the progression of the spermatogenesis were normal. Passive immunization with anti-laminin IgG provided a valuable experimental model for the in vivo study of the influence of the basement membrane on the issue of spermatogenesis and the integrity of the seminiferous epithelium.  (+info)

Effect of efferent duct ligation on the function of the blood-testis barrier in rats. (4/152)

The function of the blood-testis barrier has been assessed from the ratio of the Cr-EDTA space in the parenchyma to the measured interstitial volume in the testes of rats at various times after unilateral ligation of the efferent ducts. The barrier remained effective during the phase of fluid accumulation and testicular mass gain, which was linear for at least 24 h, but the testis mass began to decrease between 32 and 40 h after efferent duct ligation, and the Cr-EDTA space at 40 and 48 h after efferent duct ligation exceeded the volume of the interstitial tissue. This finding indicated that, at these times, the barrier to Cr-EDTA, which is normally excluded from the tubules, had broken down and the marker was entering the tubules. Thereafter, the Cr-EDTA space decreased again to be less than the interstitial tissue volume, indicating a restoration of the barrier function, although degeneration of the seminiferous epithelium continued to become more obvious. The present study is the first report of a reversible breakdown of the barrier, but the relevance of the breakdown to the effects on spermatogenesis requires further study.  (+info)

Testicular damage by microcirculatory disruption and colonization of an immune-privileged site during Borrelia crocidurae infection. (5/152)

The agent of African relapsing fever, Borrelia crocidurae, causes reversible multiple organ damage. We hypothesize that this damage is caused when the spirochete forms aggregate with erythrocytes in vivo, creating rosettes that plug the microcirculatory system. To test this hypothesis, we compared testicular microcirculation over an extended time period in two groups of rats: one experimentally inoculated with B. crocidurae, the other with the nonerythrocyte rosette-forming Borrelia hermsii. In the B. crocidurae group, erythrocyte rosettes formed during spiro-chetemia blocked precapillary blood vessels and reduced the normal pattern of microcirculatory blood flow. After spirochetemia, erythrocyte rosettes disappeared and flow was normalized. Decreased blood flow and focal vascular damage with increased permeability and interstitial bleeding adjacent to the erythrocyte microemboli induced cell death in seminiferous tubules. Interestingly, we found that B. crocidurae could penetrate the tubules and remain in the testis long after the end of spirochetemia, suggesting that the testis can serve as a reservoir for this bacteria in subsequent relapses. The group infected with B. hermsii displayed normal testicular blood flow and vasomotion at all selected time points, and suffered no testicular damage. These results confirmed our hypothesis that the erythrocyte rosettes produce vascular obstruction and are the main cause of histopathology seen in model animal and human infections.  (+info)

A 22-amino acid synthetic peptide corresponding to the second extracellular loop of rat occludin perturbs the blood-testis barrier and disrupts spermatogenesis reversibly in vivo. (6/152)

When Sertoli cells were cultured in vitro on Matrigel-coated bicameral units, the assembly of the inter-Sertoli tight junction (TJ) permeability barrier correlated with an induction of occludin expression. Inclusion of a 22-amino acid peptide, NH(2)-GSQIYTICSQFYTPGGTGLYVD-COOH, corresponding to residues 209-230 in the second extracellular loop of rat occludin, at 0.2-4 microM into Sertoli cell cultures could perturb the assembly of Sertoli TJs dose-dependently and reversibly. This peptide apparently exerts its effects by interfering with the homotypic interactions of two occludin molecules between adjacent Sertoli cells at the sites of TJs, thereby disrupting TJs, which, in turn, causes a decline in transepithelial electrical resistance across the Sertoli cell epithelium. When similar experiments were performed using a 22-amino acid myotubularin peptide, NH(2)-TKVNERYELCDTYPALLAVPAN-COOH (residues 156-177), no effects on the assembly of inter-Sertoli TJs in vitro were noted. When a single dose of this synthetic occludin peptide was administered to adult rats intratesticularly at 1.5-10 mg/testis, germ cells began to deplete from the seminiferous epithelium within 8-16 days. By 27 days, virtually all tubules were devoid of germ cells. This antispermatogenic effect was reversible, because germ cells progressively repopulated the epithelium thereafter. Treated testes were indistinguishable from normal or control testes by 68 days post-occludin peptide treatment when assessed using histological analysis. In contrast, control rats receiving either no treatment, vehicle alone, or a 22-amino acid synthetic peptide of myotubularin displayed no changes in the testicular morphology at all time points. The occludin peptide-induced germ cell depletion was also accompanied by a disruption of the blood-testis barrier (BTB) when assessed by micropuncture techniques quantifying [(125)I]-BSA in rete testis fluid and seminiferous tubular fluid following i.v. administration of [(125)I]-BSA through the jugular vein. These results illustrate that the occludin peptide-induced disruption of the BTB may possibly affect the underlying adherens junctions, which causes premature release of germ cells from the epithelium and reversible infertility.  (+info)

Expression of a blood-brain barrier-specific antigen in the reproductive tract of the male rat. (7/152)

The endothelial barrier antigen (EBA) is a protein expressed specifically by the endothelial cells of the rat brain barrier vessels. This antigen has been described as a 'barrier protein' and is used as a marker for the competent blood-brain barrier. A blood-testis barrier has also been described. However, unlike the blood-brain barrier, which is formed by endothelial cells, the blood-testis barrier is formed mainly by the Sertoli cells, which provide an isolated environment for spermatogenic cells within the seminiferous tubules. Testicular blood vessels express the erythroid glucose transporter protein and other markers, which are strongly expressed in brain blood vessels, and may contribute to the blood-testis barrier. This study was carried out to determine whether Sertoli cells or testicular blood vessels express EBA. Tissues of other organs were used as controls for EBA expression. EBA was expressed by the endothelial cells in most microvessels of the testis, and in a few vessels of the epididymis, seminal vesicle, prostate gland, vas deferens and bladder-neck region. Furthermore, EBA was strongly and consistently detected in epithelial cells of the rete testis and dorsolateral prostate gland, and in a few epithelial cells of the ventral prostate gland, the seminal vesicle and the coagulating gland. However, Sertoli cells, which are the main site of the blood-testis barrier, were negative for EBA. In conclusion, EBA may have a wider role in rat tissues than has been previously appreciated.  (+info)

Cr(V) involvement in the toxicity pathway of testicular damage. (8/152)

AIM: The functional integrity of the blood-testis barrier (BTB) in male mice exposed to Cr(V) was studied in order to clarify the mechanism underlying testicular injury. METHODS: Adult male mice were subcutaneously injected repeated doses of 8.02 micromol (0.5 ml) of Cr/mouse.day for 5 days. Animals receiving a similar volume of bis(hydroxyethyl)-aminotris(hydroxymethyl)methane buffer (BT) were used as controls. The animals were sacrificed on day 6 and small fragments of seminiferous tubules, approximately 8-10 mm length, were incised and sutured at both ends. They were exposed in vitro to horseradish peroxidase-containing culture medium for 10 minutes. Tissues were then fixed and processed for ultrastructural studies. RESULTS: Controls and Cr(V)-treated group resulted in the uptake of the tracer by Sertoli cells. However, the major finding consisted in the permeability of the BTB only in the Cr(V)-group, as evidenced by the presence of the tracer within the junctions between the neighbouring Sertoli cells. CONCLUSION: The BTB is disrupted in mice submitted to Cr(V). The permeability of the BTB is a crucial feature to be investigated for the understanding of lesions within the seminiferous tubule.  (+info)