Blastocystis isolates from a pig and a horse are closely related to Blastocystis hominis. (1/51)

Blastocystis has a widespread distribution in a variety of animals, which is a potential source of infection for humans. However, the contribution of zoonotic transmission remains unclear due to the absence of molecular proof of these organisms being identical to those found in humans. We report herein the similar subgroup of Blastocystis isolates from humans, pigs, and a horse using a restriction fragment length polymorphism (RFLP) analysis of partial small-subunit ribosomal DNA (ssu rDNA). Additionally, sequence and phylogenic analysis of partial ssu rDNA of Blastocystis from a human, a pig, and a horse sharing a common subgroup shows that Blastocystis isolates from a pig and a horse were monophyletic and closely related to B. hominis, with 92 to 94% identity. These results suggest the possibility of zoonotic potential of Blastocystis.  (+info)

PCR-based identification of zoonotic isolates of Blastocystis from mammals and birds. (2/51)

The genotype of Blastocystis isolated from humans and animals is highly polymorphic. Therefore, it is important to compare the genotypes of Blastocystis isolates from humans and animals to determine the zoonotic potential of animal isolates. PCR-based genotype classification using known sequence-tagged site (STS) primers allows identification of zoonotic isolates of animal origin. To this end, 51 isolates from monkeys, cattle, pigs, chickens, quails and pheasants were subjected to genotype analysis using seven kinds of STS primers. Out of the 51 isolates, 39 were identified as one of the known genotypes, four showed mixed genotypes, and eight were unknown genotypes as these were negative for all STS primers. When these results were combined with previous studies on 41 isolates from animals and compared with the diversity of genotypes of 102 human Blastocystis hominis isolates, 67.4 % (62/92) of isolates from mammals and birds were identical to human B. hominis genotypes. Since the unknown genotype of human origin had been placed into an additional clade in the small-subunit rRNA gene phylogeny, further molecular study on the eight isolates of unknown genotype from the present study will facilitate our understanding of their zoonotic potential.  (+info)

Molecular phylogenies of Blastocystis isolates from different hosts: implications for genetic diversity, identification of species, and zoonosis. (3/51)

Small-subunit (SSU) rRNA gene sequences were obtained by PCR from 12 Blastocystis isolates from humans, rats, and reptiles for which elongation factor 1alpha (EF-1alpha) gene sequences are already available. These new sequences were analyzed by the Bayesian method in a broad phylogeny including, for the first time, all Blastocystis sequences available in the databases. Phylogenetic trees identified seven well-resolved groups plus several discrete lineages that could represent newly defined clades. Comparative analysis of SSU rRNA- and EF-1alpha-based trees obtained by maximum-likelihood methods from a restricted sampling (13 isolates) revealed overall agreement between the two phylogenies. In spite of their morphological similarity, sequence divergence among Blastocystis isolates reflected considerable genetic diversity that could be correlated with the existence of potentially >/=12 different species within the genus. Based on this analysis and previous PCR-based genotype classification data, six of these major groups might consist of Blastocystis isolates from both humans and other animal hosts, confirming the low host specificity of Blastocystis. Our results also strongly suggest the existence of numerous zoonotic isolates with frequent animal-to-human and human-to-animal transmissions and of a large potential reservoir in animals for infections in humans.  (+info)

Viable blastocystis cysts in Scottish and Malaysian sewage samples. (4/51)

Blastocystis cysts were detected in 38% (47/123) (37 Scottish, 17 Malaysian) of sewage treatment works. Fifty percent of influents (29% Scottish, 76% Malaysian) and 28% of effluents (9% Scottish, 60% Malaysian) contained viable cysts. Viable cysts, discharged in effluent, provide further evidence for the potential for waterborne transmission of Blastocystis.  (+info)

Blastocystis ratti induces contact-independent apoptosis, F-actin rearrangement, and barrier function disruption in IEC-6 cells. (5/51)

Blastocystis is an enteric protozoan purportedly associated with numerous clinical cases of diarrhea, flatulence, vomiting, and other gastrointestinal symptoms. Despite new knowledge of Blastocystis cell biology, genetic diversity, and epidemiology, its pathogenic potential remains controversial. Numerous clinical and epidemiological studies either implicate or exonerate the parasite as a cause of intestinal disease. Therefore, the aim of this study was to investigate the pathogenic potential of Blastocystis by studying the interactions of Blastocystis ratti WR1, an isolate of zoonotic potential, with a nontransformed rat intestinal epithelial cell line, IEC-6. Here, we report that B. ratti WR1 induces apoptosis in IEC-6 cells in a contact-independent manner. Furthermore, we found that B. ratti WR1 rearranges F-actin distribution, decreases transepithelial resistance, and increases epithelial permeability in IEC-6 cell monolayers. In addition, we found that the effects of B. ratti on transepithelial electrical resistance and epithelial permeability were significantly abrogated by treatment with metronidazole, an antiprotozoal drug. Our results suggest for the first time that Blastocystis-induced apoptosis in host cells and altered epithelial barrier function might play an important role in the pathogenesis of Blastocystis infections and that metronidazole has therapeutic potential in alleviating symptoms associated with Blastocystis.  (+info)

Cellular identification of a novel uncultured marine stramenopile (MAST-12 Clade) small-subunit rRNA gene sequence from a norwegian estuary by use of fluorescence in situ hybridization-scanning electron microscopy. (6/51)

Revealing the cellular identity of organisms behind environmental eukaryote rRNA gene sequences is a major objective in microbial diversity research. We sampled an estuarine oxygen-depleted microbial mat in southwestern Norway and retrieved an 18S rRNA gene signature that branches in the MAST-12 clade, an environmental marine stramenopile clade. Detailed phylogenetic analyses revealed that MAST-12 branches among the heterotrophic stramenopiles as a sister of the free-living Bicosoecida and the parasitic genus Blastocystis. Specific sequence signatures confirmed a relationship to these two groups while excluding direct assignment. We designed a specific oligonucleotide probe for the target sequence and detected the corresponding organism in incubation samples using fluorescence in situ hybridization (FISH). Using the combined FISH-scanning electron microscopy approach (T. Stoeck, W. H. Fowle, and S. S. Epstein, Appl. Environ. Microbiol. 69:6856-6863, 2003), we determined the morphotype of the target organism among the very diverse possible morphologies of the heterotrophic stramenopiles. The unpigmented cell is spherical and about 5 mum in diameter and possesses a short flagellum and a long flagellum, both emanating anteriorly. The long flagellum bears mastigonemes in a characteristic arrangement, and its length (30 mum) distinguishes the target organism from other recognized heterotrophic stramenopiles. The short flagellum is naked and often directed posteriorly. The organism possesses neither a lorica nor a stalk. The morphological characteristics that we discovered should help isolate a representative of a novel stramenopile group, possibly at a high taxonomic level, in order to study its ultrastructure, physiological capabilities, and ecological role in the environment.  (+info)

Blastocystis ratti contains cysteine proteases that mediate interleukin-8 response from human intestinal epithelial cells in an NF-kappaB-dependent manner. (7/51)

Blastocystis is a ubiquitous enteric protozoan found in the intestinal tracts of humans and a wide range of animals. Evidence accumulated over the last decade suggests association of Blastocystis with gastrointestinal disorders involving diarrhea, abdominal pain, constipation, nausea, and fatigue. Clinical and experimental studies have associated Blastocystis with intestinal inflammation, and it has been shown that Blastocystis has potential to modulate the host immune response. Blastocystis is also reported to be an opportunistic pathogen in immunosuppressed patients, especially those suffering from AIDS. However, nothing is known about the parasitic virulence factors and early events following host-parasite interactions. In the present study, we investigated the molecular mechanism by which Blastocystis activates interleukin-8 (IL-8) gene expression in human colonic epithelial T84 cells. We demonstrate for the first time that cysteine proteases of Blastocystis ratti WR1, a zoonotic isolate, can activate IL-8 gene expression in human colonic epithelial cells. Furthermore, we show that NF-kappaB activation is involved in the production of IL-8. In addition, our findings show that treatment with the antiprotozoal drug metronidazole can avert IL-8 production induced by B. ratti WR1. We also show for the first time that the central vacuole of Blastocystis may function as a reservoir for cysteine proteases. Our findings will contribute to an understanding of the pathobiology of a poorly studied parasite whose public health importance is increasingly recognized.  (+info)

Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. (8/51)

 (+info)