Irbesartan reduces QT dispersion in hypertensive individuals. (1/2256)

Angiotensin type 1 receptor antagonists have direct effects on the autonomic nervous system and myocardium. Because of this, we hypothesized that irbesartan would reduce QT dispersion to a greater degree than amlodipine, a highly selective vasodilator. To test this, we gathered electrocardiographic (ECG) data from a multinational, multicenter, randomized, double-blind parallel group study that compared the antihypertensive efficacy of irbesartan and amlodipine in elderly subjects with mild to moderate hypertension. Subjects were treated for 6 months with either drug. Hydrochlorothiazide and atenolol were added after 12 weeks if blood pressure (BP) remained uncontrolled. ECGs were obtained before randomization and at 6 months. A total of 188 subjects (118 with baseline ECGs) were randomized. We analyzed 104 subjects who had complete ECGs at baseline and after 6 months of treatment. Baseline characteristics between treatments were similar, apart from a slight imbalance in diastolic BP (irbesartan [n=53] versus amlodipine [n=51], 99.2 [SD 3. 6] versus 100.8 [3.8] mm Hg; P=0.03). There were no significant differences in BP normalization (diastolic BP <90 mm Hg) between treatments at 6 months (irbesartan versus amlodipine, 80% versus 88%; P=0.378). We found a significant reduction in QT indexes in the irbesartan group (QTc dispersion mean, -11.4 [34.5] milliseconds, P=0.02; QTc max, -12.8 [35.5] milliseconds, P=0.01), and QTc dispersion did not correlate with the change in BP. The reduction in QT indexes with amlodipine (QTc dispersion, -9.7 [35.4] milliseconds, P=0.06; QTc max, -8.6 [33.2] milliseconds, P=0.07) did not quite reach statistical significance, but there was a correlation between the change in QT indexes and changes in systolic BP. In conclusion, irbesartan improved QT dispersion, and this effect may be important in preventing sudden cardiac death in at-risk hypertensive subjects.  (+info)

The cyclo-oxygenase-dependent regulation of rabbit vein contraction: evidence for a prostaglandin E2-mediated relaxation. (2/2256)

1. Arachidonic acid (0.01-1 microM) induced relaxation of precontracted rings of rabbit saphenous vein, which was counteracted by contraction at concentrations higher than 1 microM. Concentrations higher than 1 microM were required to induce dose-dependent contraction of vena cava and thoracic aorta from the same animals. 2. Pretreatment with a TP receptor antagonist (GR32191B or SQ29548, 3 microM) potentiated the relaxant effect in the saphenous vein, revealed a vasorelaxant component in the vena cava response and did not affect the response of the aorta. 3. Removal of the endothelium from the venous rings, caused a 10 fold rightward shift in the concentration-relaxation curves to arachidonic acid. Whether or not the endothelium was present, the arachidonic acid-induced relaxations were prevented by indomethacin (10 microM) pretreatment. 4. In the saphenous vein, PGE2 was respectively a 50 and 100 fold more potent relaxant prostaglandin than PGI2 and PGD2. Pretreatment with the EP4 receptor antagonist, AH23848B, shifted the concentration-relaxation curves of this tissue to arachidonic acid in a dose-dependent manner. 5. In the presence of 1 microM arachidonic acid, venous rings produced 8-10 fold more PGE2 than did aorta whereas 6keto-PGF1alpha and TXB2 productions remained comparable. 6. Intact rings of saphenous vein relaxed in response to A23187. Pretreatment with L-NAME (100 microM) or indomethacin (10 microM) reduced this response by 50% whereas concomitant pretreatment totally suppressed it. After endothelium removal, the remaining relaxing response to A23187 was prevented by indomethacin but not affected by L-NAME. 7. We conclude that stimulation of the cyclo-oxygenase pathway by arachidonic acid induced endothelium-dependent, PGE2/EP4 mediated relaxation of the rabbit saphenous vein. This process might participate in the A23187-induced relaxation of the saphenous vein and account for a relaxing component in the response of the vena cava to arachidonic acid. It was not observed in thoracic aorta because of the lack of a vasodilatory receptor and/or the poorer ability of this tissue than veins to produce PGE2.  (+info)

ACE inhibition and ANG II receptor blockade improve glomerular size-selectivity in IgA nephropathy. (3/2256)

Protein trafficking across the glomerular capillary has a pathogenic role in subsequent renal damage. Despite evidence that angiotensin-converting enzyme (ACE) inhibitors improve glomerular size-selectivity, whether this effect is solely due to ANG II blocking or if other mediators also play a contributory role is not clear yet. We studied 20 proteinuric patients with IgA nephropathy, who received either enalapril (20 mg/day) or the ANG II receptor blocker irbesartan (100 mg/day) for 28 days in a randomized double-blind study. Measurements of blood pressure, renal hemodynamics, and fractional clearance of neutral dextran of graded sizes were performed before and after 28 days of treatment. Both enalapril and irbesartan significantly reduced blood pressure over baseline. This reduction reached the maximum effect 4-6 h after drug administration but did not last for the entire 24-h period. Despite transient antihypertensive effect, proteinuria was effectively reduced by both treatments to comparable extents. Neither enalapril nor irbesartan modified the sieving coefficients of small dextran molecules, but both effectively reduced transglomerular passage of large test macromolecules. Theoretical analysis of sieving coefficients showed that neither drug affected significantly the mean pore radius or the spread of the pore-size distribution, but both importantly and comparably reduced the importance of a nonselective shunt pathway. These data suggest that antagonism of ANG II is the key mechanism by which ACE inhibitors exert their beneficial effect on glomerular size-selective function and consequently on glomerular filtration and urinary output of plasma proteins.  (+info)

Neurotensin is a proinflammatory neuropeptide in colonic inflammation. (4/2256)

The neuropeptide neurotensin mediates several intestinal functions, including chloride secretion, motility, and cellular growth. However, whether this peptide participates in intestinal inflammation is not known. Toxin A, an enterotoxin from Clostridium difficile, mediates pseudomembranous colitis in humans. In animal models, toxin A causes an acute inflammatory response characterized by activation of sensory neurons and intestinal nerves and immune cells of the lamina propria. Here we show that neurotensin and its receptor are elevated in the rat colonic mucosa following toxin A administration. Pretreatment of rats with the neurotensin receptor antagonist SR-48, 692 inhibits toxin A-induced changes in colonic secretion, mucosal permeability, and histologic damage. Exposure of colonic explants to toxin A or neurotensin causes mast cell degranulation, which is inhibited by SR-48,692. Because substance P was previously shown to mediate mast cell activation, we examined whether substance P is involved in neurotensin-induced mast cell degranulation. Our results show that neurotensin-induced mast cell degranulation in colonic explants is inhibited by the substance P (neurokinin-1) receptor antagonist CP-96,345, indicating that colonic mast activation in response to neurotensin involves release of substance P. We conclude that neurotensin plays a key role in the pathogenesis of C. difficile-induced colonic inflammation and mast cell activation.  (+info)

Angiotensin II receptor blockade in normotensive subjects: A direct comparison of three AT1 receptor antagonists. (5/2256)

Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects.  (+info)

ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. (6/2256)

The purpose of this study is to examine the relationship between the free radical scavenging activities and the chemical structures of tea catechins ((-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC) and (-)-epicatechin (EC)) and their corresponding epimers ((-)-gallocatechin gallate (GCG), (-)-gallocatechin (GC) and (+)-catechin ((+)-C)). With electron spin resonance (ESR) we investigated their scavenging effects on superoxide anions (O-.2) generated in the irradiated riboflavin system, singlet oxygen(1O2) generated in the photoradiation-hemoporphyrin system, the free radicals generated from 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical. The results showed that the scavenging effects of galloylated catechins (EGCG and GCG) on the four free radicals were stronger than those of nongalloylated catechins (EGC, GC, EC, (+)-C), and the scavenging effects of EGC and GC were stronger than those of EC and (+)-C. Thus, it is suggested that the presence of the gallate group at the 3 position plays the most important role in their free radical-scavenging abilities and an additional insertion of the hydroxyl group at the 5' position in the B ring also contributes to their scavenging activities. Moreover, the corresponding phenoxyl radicals formed after the reaction with O-.2 were trapped by DMPO and the ESR spectra of DMPO/phenoxyl radical adducts were observed (aN=15.6 G and aHbeta=21.5 G). No significant differences were found between the scavenging effects of the catechins and their epimers when their concentrations were high. However, significant differences were observed at relatively low concentrations, and the lower their concentrations, the higher the differences. The scavenging abilities of GCG, GC and (+)-C were stronger than those of their corresponding epimers (EGCG, EGC and EC). The differences between their sterical structures played a more important role in their abilities to scavenge large free radicals, such as the free radicals generated from AAPH and the DPPH radical, than to scavenge small free radicals, such as O-.2 and 1O2, especially in the case with EGCG and GCG with more bulky steric hindrance.  (+info)

Serial changes in sarcoplasmic reticulum gene expression in volume-overloaded cardiac hypertrophy in the rat: effect of an angiotensin II receptor antagonist. (7/2256)

This study was designed to clarify whether gene expression in the cardiac sarcoplasmic reticulum [sarcoplasmic reticulum Ca2+-ATPase (SERCA), phospholamban, ryanodine receptor and calsequestrin] changes in accordance with left ventricular functional alterations in the volume-overloaded heart. Further, the effect of the angiotensin II type 1 receptor antagonist, TCV-116, on the expression of these genes was also evaluated. Left ventricular fractional shortening was significantly increased at 7 days, had returned to control levels at 21 days, and had significantly decreased at 35 days after the shunt operation, compared with sham-operated rats. The level of SERCA mRNA was significantly decreased at both 21 days and 35 days after the shunt operation. The levels of ryanodine receptor and phospholamban mRNAs were significantly decreased at 35 days in shunt-operated rats. The decrease in the SERCA mRNA level preceded the development of cardiac dysfunction. The levels of SERCA and ryanodine receptor mRNAs were correlated positively with left ventricular fractional shortening (r=0.73, P<0.0001 and r=0.61, P<0.01 respectively). Attenuation of the decrease in left ventricular fractional shortening occurred on treatment with TCV-116. After the treatment with TCV-116, the levels of SERCA and phospholamban mRNAs were restored to the respective values in sham-operated rats. Ryanodine receptor mRNA levels remained unchanged after treatment with TCV-116. These results indicate that the down-regulation of SERCA and ryanodine receptor mRNA levels may be related to cardiac dysfunction in the volume-overloaded heart. In addition, treatment with an angiotensin II receptor antagonist may restore the altered sarcoplasmic reticulum mRNA levels to control levels, and this may result in attenuation of the functional impairment in the volume-overloaded heart.  (+info)

Pharmacological diversity between native human 5-HT1B and 5-HT1D receptors sited on different neurons and involved in different functions. (8/2256)

The releases of [3H]5-hydroxytryptamine ([3H]5-HT) and of endogenous glutamic acid and their modulation through presynaptic h5-HT1B autoreceptors and h5-HT1D heteroreceptors have been investigated in synaptosomal preparations from fresh neocortical samples obtained from patients undergoing neurosurgery. The inhibition by 5-HT of the K+ (15 mM)-evoked overflow of [3H]5-HT was antagonized by the 5-HT1B/5-HT1D receptor ligand GR 127935, which was ineffective on its own; this drug was previously found to behave as a full agonist at the h5-HT1D heteroreceptor regulating glutamate release. The recently proposed selective h5-HT1B receptor ligand SB-224289 also prevented the effect of 5-HT at the autoreceptor, being inactive on its own; in contrast, SB-224289, at 1 microM, was unable to interact with the h5-HT1D heteroreceptor. The inhibitory effect of 5-HT on the K+-evoked overflow of glutamate was antagonized by the h5-HT1D receptor ligand BRL-15572; added in the absence of 5-HT the compound was without effect. BRL-15572 (1 microM) was unable to modify the effect of 5-HT at the autoreceptor regulating [3H]5-HT release. The selective 5-HT1A receptor antagonist (+)-WAY 100135, previously found to be an agonist at the h5-HT1D heteroreceptor regulating glutamate release, could not interact with the h5-HT1B autoreceptor when added at 1 microM. It is concluded that native h5-HT1B and h5-HT1D receptors exhibit a hitherto unexpected pharmacological diversity.  (+info)