Fine-scale transgenic mapping of the MyoD core enhancer: MyoD is regulated by distinct but overlapping mechanisms in myotomal and non-myotomal muscle lineages. (41/7076)

Skeletal muscle lineage determination is regulated by the myogenic regulatory genes, MyoD and Myf-5. Previously, we identified a 258 bp core enhancer element 20 kb 5' of the MyoD gene that regulates MyoD gene activation in mouse embryos. To elucidate the cis control mechanisms that regulate MyoD transcription, we have mutagenized the entire core enhancer using linker-scanner mutagenesis, and have tested the transcriptional activity of enhancer mutants using lacZ reporter gene expression in transgenic mouse embryos. In total, 83 stable transgenic lines representing 17 linker-scanner mutations were analyzed in midgestational mouse embryos. Eight linker-scanner mutations resulted in a partial or complete loss of enhancer activity, demonstrating that MyoD is primarily under positive transcriptional control. Six of these mutations reduced or abolished transgene expression in all skeletal muscle lineages, indicating that activation of MyoD expression in trunk, limb and head musculature is regulated, in part, by shared transcriptional mechanisms. Interestingly, however, two adjacent linker-scanner mutations (LS-14 and LS-15) resulted in a dramatic reduction in transgene expression specifically in myotomes at 11.5 days. At later stages, transgene expression was absent or greatly reduced in myotomally derived muscles including epaxial muscles (deep back muscles) and hypaxial muscles of the body wall (intercostal muscles, abdominal wall musculature). In contrast, head muscles, as well as muscles of the body derived from migrating muscle progenitor cells (e.g. limb, diaphragm), were unaffected by these mutations. In Pax-3-mutant mice, LS-14 and LS-15 transgene expression was eliminated in the body, but was unaffected in the head, yielding an identical expression pattern to the endogenous MyoD gene in mice mutant for both Myf-5 and Pax-3. These data support the hypothesis that LS-14 and LS-15 define the core enhancer targets for Myf-5-dependent activation of MyoD in myotomal muscles.  (+info)

Involvement of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system in regulation of transcription of catabolic genes. (42/7076)

Synthesis of catabolite-sensitive enzymes is repressed in mutants defective in the general proteins (enzyme I and HPr) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system (ptsI and ptsH mutations). To elucidate the mechanism of this phenomenon we constructed isogenic strains carrying pts mutations as well as different lesions of regulation of the lac operon or mutations affecting adenylate cyclase activity (cya mutation) and synthesis of cyclic AMP-receptor protein (crp mutation) Measurements of the differential rate of beta-galactosidase synthesis in these strains showed that the repressive effect of pts mutations was revealed in lac+, lacI, lacOc and cya bacteria, but it was lost in lacP and crp strains. It was concluded that mutational damage to the general components of the phosphoenolpyruvate-dependent phosphotransferase system diminishes activity of the lac promoter. The results obtained led to the conclusion that pts gene products (apparently phospho approximately HPr) are necessary for the initiation of transcription of catabolite-sensitive operons in E. coli.  (+info)

Expression of the nlsLacz gene in dendritic cells derived from retrovirally transduced peripheral blood CD34+ cells. (43/7076)

BACKGROUND AND OBJECTIVE: Gene transfer and expression of exogenous genetic information coding for an immunogenic protein in antigen presenting cells (APCs) can promote an immune response. This was investigated by retroviral transfer of a marker gene into CD34+ derived APCs. DESIGN AND METHODS: To achieve long term expression of a specific transgene in APCs, G-CSF mobilized peripheral blood CD34+ cell populations were retrovirally transduced with the bacterial nlsLacZ, a marker gene used here as a model, in the presence of IL-3, IL-6, GM-CSF and SCF prior to being induced to differentiate into dendritic and macrophage cells by GM-CSF and TNF-a. RESULTS: Addition of IL-4 was found to induce dendritic differentiation preferentially by inhibiting proliferation and differentiation of the macrophage lineage. As assessed by X-Gal staining, LacZ gene expression was observed in cells from both the dendritic lineage (CD1a+/CD14-) which still exhibits the highest immunostimulatory activity in mixed lymphocyte reaction and from the macrophage lineage (CD1a-/ CD14+). INTERPRETATION AND CONCLUSIONS: This study sets out the possibility of transducing dendritic and macrophage progenitors present in the CD34+ cell population and in using a marker gene such as nlsLacZ to study gene expression in antigen presenting cell compartments.  (+info)

EnvZ-independent phosphotransfer signaling pathway of the OmpR-mediated osmoregulatory expression of OmpC and OmpF in Escherichia coli. (44/7076)

The Escherichia coli EnvZ-OmpR regulatory system is a paradigm of intracellular signal transduction mediated by the well-documented phosphotransfer mechanism, by which the expression of the major outer membrane proteins, OmpC and OmpF, is regulated in response to the medium osmolarity. Although it is clear that the EnvZ histidine(His)-kinase is the major player in the phosphorylation of OmpR, it has been assumed for some time that there may be an alternative phospho-donor(s) that can phosphorylate OmpR under certain in vitro and in vivo conditions. In this study, to address this long-standing issue, extensive genetic studies were done with certain mutant alleles, including delta envZ, delta(ackA-pta), and delta sixA, as well as delta ompR. Here, for the first time, genetic evidence is provided that, in addition to EnvZ, acetyl phosphate and an as yet unidentified sensor His-kinase can serve as alternative in vivo phospho-donors for OmpR, even in the envZ+ background. A model for the alternative phosphotransfer signaling pathway involved in the phosphorylation of OmpR is proposed.  (+info)

Recombinant adeno-associated virus-based vectors provide short-term rather than long-term transduction of primitive hematopoietic stem cells. (45/7076)

Bone marrow stem cells collected from B6-Gpi-1a mice pretreated with 5-fluorouracil were incubated for 2 h at 37 degrees C in the presence of the recombinant adenovirus-associated virus-based vector (rAAV) SSV9. As measured in vitro immediately following transduction, SSV9 was found to be effective in transducing the primitive cobble-stone-area-forming cell (CAFC)-35 subset (60% transduction efficiency). However, this did not predict long-term expression as the presence of the transgene could not be detected six months after transplantation of 1-2 x 106 transduced bone marrow stem cells into lethally irradiated recipients. CAFC analysis of bone marrow cells and Southern blot analysis of bone marrow and spleen cells were negative, and polymerase chain reaction analysis showed less than 0.1% transduction in bone marrow cells. Therefore, based on our study we conclude that rAAV transiently transduces hematopoietic stem cells but fails to integrate into the genome, leading to the loss of the reporter gene within the first six months after transplantation in vivo.  (+info)

Use of L-plastin promoter to develop an adenoviral system that confers transgene expression in ovarian cancer cells but not in normal mesothelial cells. (46/7076)

The objective of this study was to develop an adenoviral vector system that would generate a pattern of expression of exogenous therapeutic genes appropriate for the treatment of ovarian cancer. For this purpose, we have generated a replication-deficient recombinant adenoviral vector, AdLPLacZ, which contains the human L-plastin (LP) promoter (LP-P) driving the Escherichia coli LacZ gene. LP is constitutively expressed at high levels in malignant epithelial cells but is not expressed in normal tissues, except at low levels in mature hematopoietic cells. Because adenoviral vectors infect early hematopoietic multilineage precursor cells only poorly or not at all, this vector would be of use in the peritoneal cavity and in vitro for marrow purging. We first analyzed the expression of the LacZ reporter gene in ovarian and breast cancer cell lines, normal fibroblasts, and leukemia cell lines using the adenoviral vector in which the LacZ gene is governed by the LP-P promoter (AdLPLacZ) or in which the LacZ gene is governed by the cytomegalovirus (CMV) promoter (AdCMVLacZ). We found equivalent and high levels of expression of beta-galactosidase (beta-gal) by AdLPLacZ and AdCMVLacZ vectors in the breast or ovarian cancer cell lines as well as in a fibrosarcoma cell line, indicating that the adenoviral vectors infected these cells and expressed their transgenes equally with the LP and CMV promoters. Expression of the LacZ gene with the CMV vector but not with the LP-P vector was observed in experiments with normal fibroblasts, indicating that the vectors infected the cells, but that the LP-P was not active within them. In hematopoietic cells such as U937 cells, no measurable beta-gal activity was detected in cells infected either by AdLPLacZ or by AdCMVLacZ, indicating that the adenoviral vectors were not infecting the cells. Although beta-gal activity was observed in fresh ascitic ovarian cancer cells after infection with adenoviral vectors containing CMV or the LP promoters, beta-gal activity was detected in a portion of a biopsy of normal peritoneum when the tissues were exposed to the AdCMVLacZ vector, but not when tissues were exposed to the AdLPLacZ vector. These results suggest that the transcription of therapeutic genes in cells infected by the AdLP vectors would be restricted to LP expression-positive ovarian carcinoma cells but would not be seen in the normal mesothelial cells of the peritoneal cavity. This possibility implies that adenoviral vectors carrying therapeutic genes driven by the LP-P would be of use for the intracavitary treatment ovarian cancer.  (+info)

Intraperitoneal gene therapy with adenoviral-mediated p53 tumor suppressor gene for ovarian cancer model in nude mouse. (47/7076)

In an effort to develop a method for better local control of advanced ovarian cancers, we have established a peritoneal tumor model of ovarian cancer in the nude mouse and applied intraperitoneal gene therapy with the recombinant adenoviral-mediated wild-type p53 tumor suppressor gene (Avp53). The results indicate that: (a) the recombinant adenoviral vector system effectively infected the tumor and normal cells in the peritoneal cavity; and (b) Avp53 treatment effectively suppressed the growth of peritoneal tumors and prolonged the survival of the treated group, especially when the tumor burden was less. These results suggest that intraperitoneal gene therapy using Avp53 is potentially useful as an adjuvant therapeutic modality in human ovarian cancer.  (+info)

ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. (48/7076)

We isolated mutations in Drosophila E2F and DP that affect chorion gene amplification and ORC2 localization in the follicle cells. In the follicle cells of the ovary, the ORC2 protein is localized throughout the follicle cell nuclei when they are undergoing polyploid genomic replication, and its levels appear constant in both S and G phases. In contrast, when genomic replication ceases and specific regions amplify, ORC2 is present solely at the amplifying loci. Mutations in the DNA-binding domains of dE2F or dDP reduce amplification, and in these mutants specific localization of ORC2 to amplification loci is lost. Interestingly, a dE2F mutant predicted to lack the carboxy-terminal transcriptional activation and RB-binding domain does not abolish ORC2 localization and shows premature chorion amplification. The effect of the mutations in the heterodimer subunits suggests that E2F controls not only the onset of S phase but also origin activity within S phase.  (+info)