Comparison of the fibrin-binding activities in the N- and C-termini of fibronectin. (65/178859)

Fibronectin (Fn) binds to fibrin in clots by covalent and non-covalent interactions. The N- and C-termini of Fn each contain one non-covalent fibrin-binding site, which are composed of type 1 (F1) structural repeats. We have previously localized the N-terminal site to the fourth and fifth F1 repeats (4F1.5F1). In the current studies, using proteolytic and recombinant proteins representing both the N- and C-terminal fibrin-binding regions, we localized and characterized the C-terminal fibrin-binding site, compared the relative fibrin-binding activities of both sites and determined the contribution of each site to the fibrin-binding activity of intact Fn. By fibrin-affinity chromatography, a protein composed of the 10F1 repeat through to the C-terminus of Fn (10F1-COOH), expressed in COS-1 cells, and 10F1-12F1, produced in Saccharomyces cerevisiae, displayed fibrin-binding activity. However, since 10F1 and 10F1.11F1 were not active, the presence of 12F1 is required for fibrin binding. A proteolytic fragment of 14.4 kDa, beginning 14 residues N-terminal to 10F1, was isolated from the fibrin-affinity matrix. Radio-iodinated 14.4 kDa fibrin-binding peptide/protein (FBP) demonstrated a dose-dependent and saturable binding to fibrin-coated wells that was both competitively inhibited and reversed by unlabelled 14.4 kDa FBP. Comparison of the fibrin-binding affinities of proteolytic FBPs from the N-terminus (25.9 kDa FBP), the C-terminus (14.4 kDa) and intact Fn by ELISA yielded estimated Kd values of 216, 18 and 2.1 nM, respectively. The higher fibrin-binding affinity of the N-terminus was substantiated by the ability of both a recombinant 4F1.5F1 and a monoclonal antibody (mAb) to this site to maximally inhibit biotinylated Fn binding to fibrin by 80%, and by blocking the 90% inhibitory activity of a polyclonal anti-Fn, by absorption with the 25.9 kDa FBP. We propose that whereas the N-terminal site appears to contribute to most of the binding activity of native Fn to fibrin, the specific binding of the C-terminal site may strengthen this interaction.  (+info)

Heterogeneous nuclear ribonucleoprotein D0B is a sequence-specific DNA-binding protein. (66/178859)

Complement receptor 2 (CR2) is important in the regulation of the B lymphocyte response; the regulation of its expression is therefore of central importance. We recently reported that a 42 kDa heterogeneous nuclear ribonucleoprotein (hnRNP) is involved in the transcriptional regulation of the human CR2 gene [Tolnay, Lambris and Tsokos (1997) J. Immunol. 159, 5492-5501]. We cloned the cDNA encoding this protein and found it to be identical with hnRNP D0B, a sequence-specific RNA-binding protein. By using a set of mutated oligonucleotides, we demonstrated that the recombinant hnRNP D0B displays sequence specificity for double-stranded oligonucleotide defined by the CR2 promoter. We conducted electrophoretic mobility-shift assays to estimate the apparent Kd of hnRNP D0B for the double-stranded DNA motif and found it to be 59 nM. Interestingly, hnRNP D0B displayed affinities of 28 and 18 nM for the sense and anti-sense strands of the CR2 promoter-defined oligonucleotide respectively. The significantly greater binding affinity of hnRNP D0B for single-stranded DNA than for double-stranded DNA suggests that the protein might melt the double helix. The intranuclear concentration of sequence-specific protein was estimated to be 250-400 nM, indicating that the protein binds to the CR2 promoter in vivo. Co-precipitation of a complex formed in vivo between hnRNP D0B and the TATA-binding protein demonstrates that hnRNP D0B interacts with the basal transcription apparatus. Our results suggest a new physiological role for hnRNP D0B that involves binding to double- and single-stranded DNA sequences in a specific manner and functioning as a transcription factor.  (+info)

Cloning and functional characterization of the 5'-flanking region of the human bone morphogenetic protein-2 gene. (67/178859)

Bone morphogenetic protein-2 (BMP-2) is involved in bone formation, organogenesis or pattern formation during development. The expression of BMP-2 is regulated accurately and coordinately with that of other transforming growth factor-beta (TGF-beta) superfamily members. To elucidate the mechanism underlying the regulation of BMP-2 expression, a 6.7 kb SpeI-SalI fragment, from the P1 phage library, encompassing the 5'-flanking region of the human BMP-2 gene, was isolated and sequenced. Transcription start sites were mapped by the 5'-rapid amplification of cDNA ends (RACE) method. It has been found that the human BMP-2 gene contains, largely, two promoter regions surrounded by GC-rich sequences with several Sp1 consensus motifs. The proximal promoter possesses a single start site, whereas several start sites are clustered in the distal promoter region. Neither TATA nor CAAT consensus sequences are found in the proximity of the start sites for either promoter. Interestingly, in no case is the transcription-initiation site common between the human and mouse BMP-2 genes, although the sequence of the BMP-2 gene is well conserved in the promoter region between two species. Transient transfection experiments with the reporter fused with various lengths of the BMP-2 promoter sequence demonstrated that there exist enhancer elements in an 1.1 kb GC-rich fragment covering both promoter regions. It is noteworthy that the enhancer elements are 5'-flanked by a 790 bp strong repressor element that is characterized by numerous AT stretches. This intriguing organization may be amenable to the tight control of the expression of BMP-2 that is essential for development or bone morphogenesis.  (+info)

Contributions to gene activation by multiple functions of Bicoid. (68/178859)

Bicoid is a Drosophila morphogenetic protein required for the development of anterior structures in the embryo. To gain a better understanding of how Bicoid works as a transcriptional activator, we systematically analysed various functions of Bicoid required for gene activation. We provide evidence suggesting that Bicoid is an intrinsically weak activator. First, our biochemical experiments demonstrate that the Bicoid-DNA complexes are very unstable, suggesting a weak DNA-binding function of Bicoid. This idea is further supported by our experiments demonstrating that the same number of LexA-Bicoid fusion molecules can activate transcription more effectively from LexA sites than from Bicoid sites. Secondly, we demonstrate that transcriptional activation by the weak activator Bicoid is readily influenced by the local enhancer environment. These influences are decreased when the Bicoid function is enforced by attaching to it either a known dimerization domain or the strong activation domain VP16. VP16 can also compensate for the loss of some Bicoid sites in an enhancer element. Our experiments demonstrate that the outcome of transcriptional activation by Bicoid is determined by multiple weak functions that are interconnected, a finding that can further help us to understand how this morphogenetic protein achieves its molecular functions.  (+info)

Identification of a cAMP response element within the glucose- 6-phosphatase hydrolytic subunit gene promoter which is involved in the transcriptional regulation by cAMP and glucocorticoids in H4IIE hepatoma cells. (69/178859)

The expression of a luciferase reporter gene under the control of the human glucose 6-phosphatase gene promoter was stimulated by both dexamethasone and dibutyryl cAMP in H4IIE hepatoma cells. A cis-active element located between nucleotides -161 and -152 in the glucose 6-phosphatase gene promoter was identified and found to be necessary for both basal reporter-gene expression and induction of expression by both dibutyryl cAMP and dexamethasone. Nucleotides -161 to -152 were functionally replaced by the consensus sequence for a cAMP response element. An antibody against the cAMP response element-binding protein caused a supershift in gel-electrophoretic-mobility-shift assays using an oligonucleotide probe representing the glucose 6-phosphatase gene promoter from nucleotides -161 to -152. These results strongly indicate that in H4IIE cells the glucose 6-phosphatase gene-promoter sequence from -161 to -152 is a cAMP response element which is important for the regulation of transcription of the glucose 6-phosphatase gene by both cAMP and glucocorticoids.  (+info)

Hyperoxia induces the neuronal differentiated phenotype of PC12 cells via a sustained activity of mitogen-activated protein kinase induced by Bcl-2. (70/178859)

We previously reported that rat pheochromocytoma PC12 cells express the neuronal differentiated phenotype under hyperoxia through the production of reactive oxygen species (ROS). In the present study, we found that in this phenotype, Bcl-2, an apoptosis inhibitor, affects mitogen-activated protein (MAP)-kinase activity, which is known as a key enzyme of the signal-transduction cascade for differentiation. When PC12 cells were cultured under hyperoxia, a rapid increase in MAP-kinase activity, including that of both p42 and p44, was observed. Although the activity level then decreased quickly, activity higher than the control level was observed for 48 h. PD98059, an inhibitor of MAP kinase, suppressed the hyperoxia-induced neurite extensions, suggesting the involvement of MAP-kinase activity in the mechanism of differentiation induced by ROS. An elevation of Bcl-2 expression was observed after culturing PC12 cells for 24 h under hyperoxia. This Bcl-2 elevation was not affected by treatment with PD98059, suggesting that it did not directly induce neurite extension under hyperoxia. However, the blockade of the Bcl-2 elevation by an antisense oligonucleotide inhibited the sustained MAP-kinase activity and neurite extensions under hyperoxia. Further, in PC12 cells highly expressing Bcl-2, the sustained MAP-kinase activity and neurite extensions under hyperoxia were enhanced. These results suggested that MAP kinase is activated through the production of ROS, and the subsequent elevation of Bcl-2 expression sustains the MAP-kinase activity, resulting in the induction of the neuronal-differentiation phenotype of PC12 cells under hyperoxia.  (+info)

Cloning and characterization of a maize cytochrome-b5 reductase with Fe3+-chelate reduction capability. (71/178859)

We previously purified an NADH-dependent Fe3+-chelate reductase (NFR) from maize roots with biochemical features of a cytochrome-b5 reductase (b5R) [Sparla, Bagnaresi, Scagliarini and Trost (1997) FEBS Lett. 414, 571-575]. We have now cloned a maize root cDNA that, on the basis of sequence information, calculated parameters and functional assay, codes for NFR. Maize NFR has 66% and 65% similarity to mammal and yeast b5R respectively. It has a deduced molecular mass of 31.17 kDa and a pI of 8.53. An uncharged region is observed at its N-terminus but no myristoylation consensus site is present. Taken together, these results, coupled with previous biochemical evidence, prove that NFR belongs to the b5R class and document b5R from a plant at the molecular level for the first time. We have also identified a putative Arabidopsis thaliana NFR gene. Its organization (nine exons) closely resembles mammalian b5Rs. Several NFR isoforms are expected to exist in maize. They are probably not produced by alternative translational mechanisms as occur in mammals, because of specific constraints observed in the maize NFR cDNA sequence. In contrast with yeast and mammals, tissue-specific and various subcellular localizations of maize b5R isoforms could result from differential expression of the various members of a multigene family. The first molecular characterization of a plant b5R indicates an overall remarkable evolutionary conservation for these versatile reductase systems. In addition, the well-characterized Fe3+-chelate reduction capabilities of NFR, in addition to known Fe3+-haemoglobin reduction roles for mammal b5R isoforms, suggest further and more generalized roles for the b5R class in endocellular iron reduction.  (+info)

Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding. (72/178859)

The variable-domain-attached oligosaccharide side chains of a human IgG produced by a human-human-mouse heterohybridoma were analysed. In addition to the conserved N-glycosylation site at Asn-297, an N-glycosylation consensus sequence (Asn-Asn-Ser) is located at position 75 in the variable region of its heavy chain. The antibody was cleaved into its antigen-binding (Fab) and crystallizing fragments. The oligosaccharides of the Fab fragment were released by digestion with various endo- and exoglycosidases and analysed by anion-exchange chromatography and fluorophore-assisted carbohydrate electrophoresis. The predominant components were disialyl- bi-antennary and tetra-sialyl tetra-antennary complex carbohydrates. Of note is the presence in this human IgG of oligosaccharides containing N-glycolylneuraminic acid and N-acetylneuraminic acid in the ratio of 94:6. Furthermore, we determined N-acetylgalactosamine in the Fab fragment of this antibody, suggesting the presence of O-linked carbohydrates. A three-dimensional structure of the glycosylated variable (Fv) fragment was suggested using computer-assisted modelling. In addition, the influence of the Fv-associated oligosaccharides of the CBGA1 antibody on antigen binding was tested in several ELISA systems. Deglycosylation resulted in a decreased antigen-binding activity.  (+info)