Non-fatal injuries sustained by seatbelt wearers: a comparative study. (1/505)

The injuries sustained by 969 drivers and front-seat passengers in road-traffic accidents were studied. Altogether 196 (20-2%) of the drivers and passengers were wearing seat belts and 773 (79-8%) were not. The injuries among the two groups differed greatly in both severity and distribution. A total of 54 (27-6%) of the seatbelt wearers sustained one or more fractures compared with 300 (38-8%) of the non-wearers, and 18 (9-2%) of the seatbelt wearers were severely injured compared with 300 (38-8%) of the non-wearers. Soft-tissue injuries to the face were sustained by only 29 (14-8%) of the seatbelt wearers compared with 425 (55%) of the non-wearers. Since wearing seatbelts may become compulsory, the type and pattern of injuries to be expected in wearers should be appreciated.  (+info)

Effect of leukocytes on corneal cellular proliferation and wound healing. (2/505)

PURPOSE: To establish whether fucoidin, by blocking the adhesion of leukocytes on the limbal vascular endothelium, prevents extravasation of the cells from the blood stream into the limbal stroma and the wounded area after corneal injury. Successful leukocyte blocking enabled investigation of the influence of leukocytes on corneal cellular proliferation after corneal wounding. METHODS: Thirty-two New Zealand White rabbits were used. Photorefractive keratectomy (PRK) and a standardized alkali corneal wound were used as models in two sets of experiments. In half of the injured rabbits fucoidin was used to prevent leukocytes from leaving the local vessels. The efficiency of the blocking technique was evaluated by counting the number of leukocytes in the limbal and wounded corneal areas. Proliferating cell nuclear antigen (PCNA) was used as a marker for proliferative activity. RESULTS: The infiltration of leukocytes into the limbus and the cornea after PRK and alkali injuries can be blocked by fucoidin. The healing rate of corneal epithelium after alkali burn was retarded in the absence of leukocytes. PCNA expression was enhanced in the presence of leukocytes. Fucoidin per se had no influence on corneal cell proliferation and wound healing. CONCLUSIONS: Polymorphonuclear leukocytes (PMNs) can be prevented from entering the cornea in vivo by fucoidin after PRK and after alkali burn. The corneal epithelial healing rate is delayed in the absence of PMNs in vivo, and PCNA expression increases in the presence of leukocytes.  (+info)

Prognosis of perforating eye injury. (3/505)

The assessment of visual function in a series of 130 consecutive patients of perforating eye injuries, revealed that visual acuity of 6/12 or better was regained in 63 per cent, between 6/60 and 6/18 in 9-2 per cent, less than 6/60 in 15-3 per cent, and enucleation was necessary in 9-2 per cent. In 3 per cent, the eyes were retained as blind, symptomfree, and cosmetically satisfactory organs. Two eyes were found to develop complete traumatic aniridia. None in the series was found to have sympathetic ophthalmitis.  (+info)

Ocular injuries from liquid golf ball cores. (4/505)

Tissue removed from nine new cases from 18 hours to 20 weeks after injury by a golf ball contained crystalline and other foreign material to which there was a mild inflammatory reaction followed by macrophagic activity and fibrosis. Optical and electron probe analysis showed that the crystalline material was crushed barytes containing small quantities of muscovite as is typical in natural deposits. The centres of several golf balls were shown to contain essentially identical material. By contrast with previous reports, no zinc sulphide was found. The form and frequent location of the deposits in the conjunctiva as compared with cornea and eyelid is related to the structure of these tissues.  (+info)

Factors associated with the poor final visual outcome after traumatic hyphema. (5/505)

In order to determine the factors related to the worse final visual outcome following nonperforating traumatic hyphema, the clinical characteristics of 18 patients with visual outcome of 0.1 or worse were compared with those of 166 patients with visual outcome of 0.15 or better. The presence of posterior segment injuries such as macula edema, retinal hemorrhage, epiretinal membrane, and choroidal rupture were significant factors of a poor final visual outcome (P < 0.01). The presence of anterior segment injuries such as corneal blood staining, traumatic mydriasis, iridodialysis, cataract, and lens subluxation had significant predictive factors on a poor final visual outcome and the concurrent posterior segment injuries were more frequent in these patients. Initial visual acuity of 0.1 or worse, glaucoma, vitreous hemorrhage, and eyelid laceration were also significant associations of a poor final visual outcome (P < 0.05). Patients with initially larger hyphema (grade I or more vs microscopic) and older age group (16 years or more vs 15 years or less) tended to have poor final visual acuities. Rebleeding was not associated with significant deterioration in visual prognosis. We conclude that the posterior segment injuries seem to be directly related to a poor visual outcome rather than the occurrence of secondary hemorrhage.  (+info)

Traumatic wound rupture after penetrating keratoplasty in Africa. (6/505)

AIM: To investigate risk factors, visual outcome, and graft survival for traumatic wound rupture after penetrating keratoplasty. METHODS: A retrospective analysis of 336 patients who underwent penetrating keratoplasty from 1988 to 1995. RESULTS: 19 patients (5.7%) suffered traumatic postoperative wound rupture requiring surgical repair. They were younger (mean age 16.6 years, 95% CI 13.2-20.6) and more frequently keratoconic (p = 0.01) than other patients (mean age 28.9 years, 95% CI 26.-31.0). Mean postoperative follow up was 37.7 (SD 22.9) months and 24.5 (18.9) months for the rupture and non-rupture patients. Mean interval between keratoplasty and rupture was 18 (21) weeks. The lens was damaged and removed in 37% of ruptured eyes. For keratoconics, the probability of graft survival at 5 years was lower (p = 0.03) in the ruptured eyes (75%) than in the non-ruptured eyes (90%). Endothelial failure was a more common (p <0.05) cause of graft opacification in ruptured grafts than in intact grafts. Of the ruptured eyes, 53% achieved a final corrected acuity of at least 6/18 and 63% achieved at least 6/60 compared with 48% and 71% of the intact eyes respectively (both p >0.1). The proportion of keratoconic eyes which achieved at least 6/60 was lower (p = 0.02) in the ruptured eyes (67%) than the non-ruptured eyes (87%). Eyes with wound ruptures of 5 clock hours or greater were less likely (p <0.05) to achieve an acuity of 6/18 and were more likely (p <0.05) to have an associated lens injury. CONCLUSIONS: Graft rupture is relatively common in African practice, particularly in young keratoconics. Visual outcome and graft survival are not significantly worse than for other grafted eyes, but are significantly worse than for other grafted keratoconic eyes.  (+info)

Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. (7/505)

BACKGROUND: Conditions that destroy the limbal area of the peripheral cornea, such as the Stevens-Johnson syndrome, ocular pemphigoid, and chemical and thermal injuries, can deplete stem cells of the corneal epithelium. The result is scarring and opacification of the normally clear cornea. Standard corneal transplantation cannot treat this form of functional blindness. METHODS: We performed and evaluated 70 transplantations of corneal epithelial stem cells from cadaveric eyes into 43 eyes of 39 patients with severe ocular-surface disorders and limbal dysfunction. Medical treatment had failed in all patients. The patients had a mean preoperative visual acuity of 0.004 (only being able to count the number of fingers presented by the examiner) in the affected eyes, which satisfies the criteria for legal blindness in most countries. In 28 eyes, we also performed standard corneal transplantation. Stem-cell transplantations were performed as many as four times on 1 eye if the initial results were not satisfactory; 19 eyes had multiple transplantations. Patients were followed for at least one year after transplantation. RESULTS: A mean of 1163 days after stem-cell transplantation, 22 of the 43 eyes (51 percent) had corneal epithelialization; of the 22 eyes, 7 eyes had corneal stromal edema and 15 eyes had clear corneas. Mean visual acuity improved from 0.004 to 0.02 (vision sufficient to distinguish the largest symbol on the visual-acuity chart from a distance of 1 m) (P<0.001). The 15 eyes in which the cornea remained clear had a final mean visual acuity of 0.11 (the ability to distinguish the largest symbol from a distance of 5 m). Complications of the first transplantation included persistent defects in the corneal epithelium in 26 eyes, ocular hypertension in 16 eyes, and rejection of the corneal graft in 13 of 28 eyes. The epithelial defects eventually healed in all but two of the eyes. CONCLUSIONS: Transplantation of corneal epithelial stem cells can restore useful vision in some patients with severe ocular-surface disorders.  (+info)

Ocular explosion during cataract surgery: a clinical, histopathological, experimental, and biophysical study. (8/505)

INTRODUCTION: An increasing number of cases are being recognized in which a peribulbar anesthetic for cataract surgery has been inadvertently injected directly into the globe under high pressure until the globe ruptures or explodes. We reviewed the records of 6 such cases (one of which was reported previously by us), and one additional case has been reported in the literature. Surprisingly, 2 of these 7 cases went unrecognized at the time, and the surgeons proceeded with the cataract operation; all of the patients ultimately developed severe visual loss and/or loss of the eye. OBJECTIVES: To reproduce this eye explosion in a live anesthetized rabbit model and to perform a clinical, histopathological, experimental, biophysical, and mathematical analysis of this injury. METHODS: Eyes of live anesthetized rabbits were ruptured by means of the injection of saline directly into the globe under high pressure. The clinical and pathological findings of the ruptured human and animal eyes were documented photographically and/or histopathologically. An experimental, biophysical, and mathematical analysis of the pressures and forces required to rupture the globe via direct injection using human cadavers, human eye-bank eyes, and classic physics and ophthalmic formulas was performed. The laws of Bernoulli, LaPlace, Friedenwald, and Pascal were applied to the theoretical and experimental models of this phenomenon. RESULTS: The clinical and pathological findings of scleral rupture, retinal detachment, vitreous hemorrhage, and lens extrusion were observed. In the exploded human and rabbit eyes, the scleral ruptures appeared at the equator, the limbal area, or the posterior pole. In 2 of the 7 human eyes, the anterior segments appeared entirely normal despite the rupture, and cataract surgery was completed; surgery was canceled in the other 4 cases. In 4 of the 5 injected and ruptured rabbit eyes, the anterior segments appeared essentially normal. The experiments with human eye-bank eyes and the theoretical analyses of this entity show that the pressure required to produce such an injury is much more easily obtained with a 3- or 5-mL syringe than with a syringe 10 mL or larger. CONCLUSIONS: Explosion of an eyeball during the injection of anesthesia for ocular surgery is a devastating injury that may go unrecognized. The probability of an ocular explosion can be minimized by careful use of a syringe 10 mL or larger with a blunt needle, by discontinuing the injection if resistance is met, and by inspecting the globe prior to ocular massage or placement of a Honan balloon. When ocular explosion occurs, immediate referral to and intervention by a vitreoretinal surgeon is optimal. Practicing ophthalmologists should be aware of this blinding but preventable complication of ocular surgery.  (+info)