L-Asparagine synthetase in serum as a marker for neoplasia. (1/128)

L-Asparagine synthetase appears in serum approximately 7 days after the s.c. implantation of 1 X 10(5) cells of Leukemia 5178Y/AR (resistant to L-asparaginase) and increases in activity as the neoplasm grows and metastasizes. The principal source of the enzyme is the primary tumor. After intravranial inoculation of tumor, the rate of leakage of the enzyme is more pronounced than when the subcutaneous, intramuscular, or intraperitoneal routes are used. 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (NSC 79037), a nitro-sourea effective in the palliation of L5178Y/AR, temporarily halts the influx of enzyme into the blood stream, as does surgical excision of the s.c. tumor nodules. Treatment of mice with L-asparaginase within 24 hr of inoculation of the tumor markedly augments both tumor growth and the rate of penetration of L-asparagine synthetase into the circulation. Several other L-asparagine synthetase into the circulation. Several other L-asparaginase-resistant tumors also were found to spill L-asparagine synthetase into the serum, but the correlation between this phenomenon and the specific activity of the enzyme in homogenates of the tumor was imperfect.  (+info)

Transcriptional regulation of the human asparagine synthetase gene by carbohydrate availability. (2/128)

Transcription of the asparagine synthetase (AS) gene is induced by amino acid deprivation. The present data illustrate that this gene is also under transcriptional control by carbohydrate availability. Incubation of human HepG2 hepatoma cells in glucose-free medium resulted in an increased AS mRNA content, reaching a maximum of about 14-fold over control cells after approx. 12 h. Extracellular glucose caused the repression of the content of AS mRNA in a concentration-dependent manner, with a k1/2 (concentration causing a half-maximal repression) of 1 mM. Fructose, galactose, mannose, 2-deoxyglucose and xylitol were found to maintain the mRNA content of both AS and the glucose-regulated protein GRP78 in a state of repression, whereas 3-O-methylglucose did not. Incubation in either histidine-free or glucose-free medium also resulted in adaptive regulation of the AS gene in BNL-CL.2 mouse hepatocytes, rat C6 glioma cells and human MOLT4 lymphocytes, in addition to HepG2 cells. In contrast, the steady-state mRNA content of GRP78 was unaffected by amino acid availability. Transient transfection assays using a reporter gene construct documented that glucose deprivation increases AS gene transcription via elements within the proximal 3 kbp of the AS promoter. These results illustrate that human AS gene transcription is induced following glucose limitation of the cells.  (+info)

RT-PCR cloning, characterization and mRNA expression analysis of a cDNA encoding a type II asparagine synthetase in common bean. (3/128)

Following a RT-PCR strategy based on the design of degenerate oligonucleotides resembling conserved domains of asparagine synthetase (AS; EC 6.3.5.4), we isolated a 2 kb cDNA clone (PVAS2) from root tissue of the common bean (Phaseolus vulgaris). PVAS2 encodes a protein of 584 amino acids with a predicted relative molecular mass of 65810 Da, an isoelectric point of 6.4, and a net charge of -7.2 at pH 7.0. The amino acid sequence of the protein encoded by PVAS2 is very similar to that encoded by the soybean SAS2 asparagine synthetase gene. The amino-terminal residues of the predicted PVAS2 protein are identical to the amino acids that constitute the glutamine-binding (GAT) domain of AS from other plant species, which suggests that the PVAS2 cDNA encodes a type II glutamine-dependent form of asparagine synthetase. Southern blot analysis indicates that the common bean AS is part of a small family composed of at least two genes. Expression analysis by Northern blot revealed that the PVAS2 transcript accumulates to a high level in roots and, to a lesser extent, in nodules and developing pods. Accumulation of the PVAS2 transcript in the root seems to be negatively regulated by light and sucrose, and positively regulated by nitrate.  (+info)

Activation of the unfolded protein response pathway induces human asparagine synthetase gene expression. (4/128)

The gene for the amino acid biosynthetic activity asparagine synthetase (AS) is induced by both amino acid and glucose deprivation of cells. The data reported here document that the human AS gene is induced following activation of the Unfolded Response Pathway (UPR), also known as the Endoplasmic Reticulum Stress Response (ERSR) in mammals. Increased AS transcription occurs in response to glucose deprivation, tunicamycin, or azetidine-2-carboxylate, all known to activate the UPR/ERSR pathway. Previously identified ERSR target genes contain multiple copies of a single highly conserved cis-element. In contrast, the human AS gene does not contain the ERSR element, as it has been described for other responsive genes. Instead, AS induction requires an Sp1-like sequence, a sequence previously shown to be associated with amino acid control of transcription, and possibly, a third region containing no consensus sequences for known transcription factors. Oligonucleotides covering each of these regions form DNA-protein complexes in vitro, and for some the amount of these complexes is greater when nuclear extracts from glucose-starved cells are tested. These results document that a wider range of metabolic activities are activated by the UPR/ERSR pathway than previously recognized and that genomic elements other than those already described can serve to enhance transcription of specific target genes.  (+info)

Using genomic information to investigate the function of ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis. (5/128)

The gene thiI encodes a protein (ThiI) that plays a role in the transfer of sulfur from cysteine to both thiamin and 4-thiouridine, but the reaction catalyzed by ThiI remains undetermined. Based upon sequence alignments, ThiI shares a unique "P-loop" motif with the PPi synthetase family, four enzymes that catalyze adenylation and subsequent substitution of carbonyl oxygens. To test whether or not this motif is critical for ThiI function, the Asp in the motif was converted to Ala (D189A), and a screen for in vivo 4-thiouridine production revealed the altered enzyme to be inactive. Further scrutiny of sequence data and the crystal structures of two members of the PPi synthetase family implicated Lys321 in the proposed adenylation function of ThiI, and the critical nature of Lys321 has been demonstrated by site-directed mutagenesis and genetic screening. Our results, then, indicate that ThiI catalyzes the adenylation of a substrate at the expense of ATP, a narrowing of possible reactions that provides a strong new basis for deducing the early steps in the transfer of sulfur from cysteine to both thiamin and 4-thiouridine.  (+info)

A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. (6/128)

The Corynebacterium glutamicum mutant KY9714, originally isolated as a lysozyme-sensitive mutant, does not grow at 37 degrees C. Complementation tests and DNA sequencing analysis revealed that a mutation in a single gene of 1,920 bp, ltsA (lysozyme and temperature sensitive), was responsible for its lysozyme sensitivity and temperature sensitivity. The ltsA gene encodes a protein homologous to the glutamine-dependent asparagine synthetases of various organisms, but it could not rescue the asparagine auxotrophy of an Escherichia coli asnA asnB double mutant. Replacement of the N-terminal Cys residue (which is conserved in glutamine-dependent amidotransferases and is essential for enzyme activity) by an Ala residue resulted in the loss of complementation in C. glutamicum. The mutant ltsA gene has an amber mutation, and the disruption of the ltsA gene caused lysozyme and temperature sensitivity similar to that in the KY9714 mutant. L-Glutamate production was induced by elevating growth temperature in the disruptant. These results indicate that the ltsA gene encodes a novel glutamine-dependent amidotransferase that is involved in the mechanisms of formation of rigid cell wall structure and in the L-glutamate production of C. glutamicum.  (+info)

Evidence for multiple signaling pathways in the regulation of gene expression by amino acids in human cell lines. (7/128)

In mammals, plasma concentrations of amino acids (AA) are affected by nutritional or pathologic conditions. Alterations in AA profiles have been reported as a result of a deficiency of any one of the essential AA, a dietary imbalance of AA or an insufficient intake of protein. In recent years, evidence has accumulated that AA availability regulates the expression of several genes involved in the regulation of a number of cellular functions or AA metabolism. Nevertheless, the molecular mechanisms involved in the AA regulation of mammalian gene expression are limited, particularly the signaling pathways mediating the AA response. This work provides a better understanding of the signaling pathways involved in the AA control of gene expression. We studied the expression of C/EBP homologous protein (CHOP) and asparagine synthetase (AS) in response to deprivation of a single AA and investigated the possible link between protein synthesis inhibition due to amino acid limitation and gene expression. We have shown the following: 1) several mechanisms are involved in the AA control of gene expression. When omitted from the culture medium, each AA can activate one (or several) specific signaling pathways leading to the regulation of one specific pattern of genes. 2) AA limitation by itself can induce gene expression independently of a cellular stress due to protein synthesis inhibition. Together, these results suggest that AA control of gene expression involves several specific mechanisms by which one AA (or one group of AA) can activate one signaling pathway and thus alter one specific pattern of gene expression.  (+info)

Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. (8/128)

The human asparagine synthetase (AS) gene is transcriptionally regulated by amino acid deprivation (amino acid response, AAR) and the endoplasmic reticulum stress response (ERSR), also known as the unfolded protein response pathway. The results reported here document the novel observation that induction of the AS gene by the AAR and ERSR pathways occurs via the same set of genomic elements. Data supporting this conclusion include transient transfection of AS promoter/reporter gene constructs that illustrate that the transcriptional control elements used by both pathways are contained with nucleotides -111 to -34 of the AS promoter. In vivo footprinting analysis of this region identified six specific protein-binding sites. Within two of these sites, altered footprinting was observed following amino acid or glucose deprivation, but the patterns were identical for both the AAR and the ERSR pathway. Site-directed mutation of individual nucleotides within these two binding sites confirmed their importance for regulated transcription, and none of the mutations resulted in loss of response of only one pathway. Neither of these two sites corresponds to a recently identified ERSR cis-element, nor do they contain consensus sequences for known transcription factors. Collectively, the data document that there are at least two independent transcriptional mechanisms for gene activation by the ERSR pathway, one of which terminates at the same genomic elements used by the AAR pathway.  (+info)