Arterial changes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) in relation to pathogenesis of diffuse myelin loss of cerebral white matter: examination of cerebral medullary arteries by reconstruction of serial sections of an autopsy case. (17/145)

BACKGROUND AND PURPOSE: There is little information regarding the pathogenesis underlying diffuse myelin loss in the cerebral white matter and sparing of the U fibers in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), in which the medial smooth muscle cells of systemic arteries are characteristically involved. We sought to examine the precise extent and severity of changes in the cerebral arteries in an autopsy case of CADASIL in relation to pathogenesis of the diffuse myelin loss. METHODS: We reconstructed 1000 serial sections of the frontal cerebral medullary arteries of an autopsy subject, which was the first identified Japanese case of CADASIL, as confirmed by the presence of ultrastructural deposits of granular osmiophilic material in the media of some visceral arteries and by genetic analysis. RESULTS: We reconstructed 11 medullary arteries of the frontal lobe showing diffuse myelin loss and atrophy of the white matter with sparing of the U fibers. All of these showed complete loss of medial smooth muscle cells over their entire length and severe adventitial fibrosis. Although intimal fibrosis or hyalinosis was present, luminal occlusion was scarce. These changes were also observed in the small and large arachnoidal arteries but were relatively mild in the latter and in the cortical and subcortical medullary arteries. CONCLUSIONS: These arterial changes resulted in transformation of the cerebral arteries, in particular almost all the medullary arteries, to a so-called earthen pipe state. This supports the reported findings of a reduction in vascular reactivity to fluctuations in CO2 levels and systemic blood pressure in CADASIL.  (+info)

Normal structures in the intracranial dural sinuses: delineation with 3D contrast-enhanced magnetization prepared rapid acquisition gradient-echo imaging sequence. (18/145)

BACKGROUND AND PURPOSE: The potential pitfalls in the diagnosis of dural sinus thrombosis include the presence of arachnoid granulations, intrasinus fibrotic bands (so-called septa), and hypoplasia or aplasia of the dural sinuses. The purpose of this study was to assess the appearance, distribution, and prevalence of arachnoid granulations and septa in the dural sinuses by using a high resolution 3D contrast-enhanced magnetization prepared rapid acquisition gradient-echo (MPRAGE) imaging sequence. METHODS: Conventional MR images and contrast-enhanced MPRAGE images of 100 consecutive patients who had no abnormalities of the dural sinuses were retrospectively reviewed. The incidence, site, number, size, signal intensity, and shape of arachnoid granulations and septa within the sinuses and their relationship with adjacent veins were recorded. RESULTS: With 3D contrast-enhanced MPRAGE imaging, 433 round, oval, or lobulated focal filling defects were found in a total of 90 patients. Curvilinear septa were observed in 92 patients. Sixty-nine patients had round, oval, or lobulated defects in the transverse sinus, 59 had such defects in the superior sagittal sinus, and 47 had such defects in the straight sinus. All except two of the above defects were isointense relative to CSF on all images. These structures were presumed to be arachnoid granulations. Of 431 arachnoid granulations, 233 (53.8%) were located in the superior sagittal sinus, 122 (28.1%) in the transverse sinus, and 76 (17.6%) in the straight sinus. One or more veins were seen to enter arachnoid granulations in 414 (96%) instances. CONCLUSION: The contrast-enhanced 3D MPRAGE imaging sequence showed a much higher prevalence and a different distribution of arachnoid granulations and septa within dural sinuses than have been observed in previous radiologic studies. Arachnoid granulations were closely related spatially to veins.  (+info)

Cerebrospinal fluid transport: a lymphatic perspective. (19/145)

The textbook view that projections of the arachnoid membrane into the cranial venous sinuses represent the primary cerebrospinal fluid (CSF) absorption sites seems incompatible with many clinical and experimental observations. On balance, there is more quantitative evidence suggesting a function for extracranial lymphatic vessels than exists to support a role for arachnoid villi and granulations in CSF transport.  (+info)

A case of hemeplegic migraine with leptomeningeal angiomatosis. (20/145)

A 43 year old man with thirty years history of recurrent hemiplegic migraine, consistently occurring on one side (left sided paresthesia and weakness of less than forty five minutes followed by right sided headache) and lately increasing to once in three days was investigated. CT head and carotid angiogram showed gyral calcification with prominent medullary and subependymal veins confirming the diagnosis of leptomeningeal angiomatosis. Management and followup is discussed.  (+info)

Regional diminution of von Willebrand factor expression on the endothelial covering arachnoid granulations of human, monkey and dog brain. (21/145)

Arachnoid granulation is a protrusion of the arachnoid membrane into the cranial sinus, and is thought to play an essential role in the cerebrospinal fluid (CSF) absorption. Because the cells covering the apex region of the arachnoid granulation have different morphological features compared to the ordinary endothelial cells lining of the cranial sinus lumen, it has been expected these covering endothelial cells perform some specific function in the CSF absorption mechanism. However, little is known about functional differences between the covering endothelium of the arachnoid granulation and the ordinary sinus endothelium. In the present study, the characteristics of the covering cells located at the apex of arachnoid granulations of human, monkey and dog brain were examined by histochemical and immunohistochemical methods. The endothelial cells lining the cranial sinus lumen generally expressed such proteins as von Willebrand factor (vWF), CD31 and glycoproteins containing GS-1 or LE-1 lectin reacting sugar residue which are endothelial cell markers. However, the endothelial cells specifically located at the apex of arachnoid granulations failed to show vWF immunoreactivity, whereas the other endothelial markers were positive in each species we examined. Double staining of vWF antibody with other markers has clearly demonstrated that the endothelial cells on the apex region of arachnoid granulations exhibit no expression of vWF whereas cells lining the lateral region of arachnoid granulations and the luminal surface of ordinary cranial sinuses showed co-localization of these markers. The structural and histochemical differences between endothelial cells located at the apex region of arachnoid granulations and those of the sinus wall may reflect functional differences.  (+info)

Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. (22/145)

AIMS: To describe the anatomy and the arrangement of the arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve and to consider their possible clinical relevance for cerebrospinal fluid dynamics and fluid pressure in the subarachnoid space of the human optic nerve. METHODS: Postmortem study with a total of 12 optic nerves harvested from nine subjects without ocular disease. All optic nerves used in this study were obtained no later than 7 hours after death, following qualified consent for necropsy. The study was performed with transmission (TEM) and scanning electron microscopy (SEM). RESULTS: The subarachnoid space of the human optic nerve contains a variety of trabeculae, septa, and stout pillars that are arranged between the arachnoid and the pia layers of the meninges of the nerve. They display a considerable numeric and structural variability depending on their location within the different portions of the optic nerve. In the bulbar segment (ampulla), adjacent to the globe, a dense and highly ramified meshwork of delicate trabeculae is arranged in a reticular fashion. Between the arachnoid trabeculae, interconnecting velum-like processes are observed. In the mid-orbital segment of the orbital portion, the subarachnoid space is subdivided, and can appear even loosely chambered by broad trabeculae and velum-like septa at some locations. In the intracanalicular segment additionally, few stout pillars and single round trabeculae are observed. CONCLUSION: The subarachnoid space of the human optic nerve is not a homogeneous and anatomically empty chamber filled with cerebrospinal fluid, but it contains a complex system of arachnoid trabeculae and septa that divide the subarachnoid space. The trabeculae, septa, and pillars, as well as their arrangement described in this study, may have a role in the cerebrospinal fluid dynamics between the subarachnoid space of the optic nerve and the chiasmal cistern and may contribute to the understanding of the pathophysiology of asymmetric and unilateral papilloedema. All the structures described are of such delicate character that they can not even be visualised with high resolution magnetic resonance imaging (MRI).  (+info)

Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. (23/145)

Cerebrospinal fluid (CSF) from healthy individuals contains between 1,000 and 3,000 leukocytes per ml. Little is known about trafficking patterns of leukocytes between the systemic circulation and the noninflamed CNS. In the current study, we characterized the surface phenotype of CSF cells and defined the expression of selected adhesion molecules on vasculature in the choroid plexus, the subarachnoid space surrounding the cerebral cortex, and the cerebral parenchyma. Using multicolor flow cytometry, we found that CSF cells predominantly consisted of CD4+/CD45RA-/CD27+/CD69+-activated central memory T cells expressing high levels of CCR7 and L-selectin. CD3+ T cells were present in the choroid plexus stroma in autopsy CNS tissue sections from individuals who died without known neurological disorders. P- and E-selectin immunoreactivity was detected in large venules in the choroid plexus and subarachnoid space, but not in parenchymal microvessels. CD4+ T cells in the CSF expressed high levels of P-selectin glycoprotein ligand 1, and a subpopulation of circulating CD4+ T cells displayed P-selectin binding activity. Intercellular adhesion molecule 1, but not vascular cell adhesion molecule 1 or mucosal addressin cell adhesion molecule 1, was expressed in choroid plexus and subarachnoid space vessels. Based on these findings, we propose that T cells are recruited to the CSF through interactions between P-selectin/P-selectin ligands and intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 in choroid plexus and subarachnoid space venules. These results support the overall hypothesis that activated memory T cells enter CSF directly from the systemic circulation and monitor the subarachnoid space, retaining the capacity to either initiate local immune reactions or return to secondary lymphoid organs.  (+info)

Endogenous heme oxygenase prevents impairment of cerebral vascular functions caused by seizures. (24/145)

In newborn pigs, the mechanism of seizure-induced cerebral hyperemia involves carbon monoxide (CO), the vasodilator product of heme catabolism by heme oxygenase (HO). We hypothesized that seizures cause cerebral vascular dysfunction when HO activity is inhibited. With the use of cranial window techniques, we examined cerebral vascular responses to endothelium-dependent (hypercapnia and bradykinin) and endothelium-independent (isoproterenol and sodium nitroprusside) dilators during the recovery from bicuculline-induced seizures in saline controls and in animals pretreated with a HO inhibitor, tin protoporphyrin (SnPP). SnPP (3 mg/kg iv) blocked dilation to heme and reduced the CO level in cortical periarachnoid cerebrospinal fluid, indicating HO inhibition in the cerebral microcirculation. In saline control piglets, seizures increased the CO level, which correlated with the time-dependent cerebral vasodilation; during the recovery (2 h after seizure induction), responses to all vasodilators were preserved. In SnPP-treated animals, cerebral vasodilation and the CO responses to seizures were greatly reduced, and cerebral vascular reactivity was severely impaired during the recovery. These findings suggest that HO in the cerebral microcirculation is rapidly activated during seizures and provides endogenous protection against seizure-induced vascular injury.  (+info)