Assembly of very low density lipoprotein: a two-step process of apolipoprotein B core lipidation. (1/248)

The liver plays a primary role in lipid metabolism. Important functions include the synthesis and incorporation of hydrophobic lipids, triacylglycerols and cholesteryl esters into the core of water-miscible particles called lipoproteins and the secretion of these particles into the circulation for transport to distant tissues. In this article, we present a brief overview of one aspect of the assembly process of very low density lipoproteins, namely, possible mechanisms for combining core lipids with apolipoprotein B. This is a complex process in which apolipoprotein B interacts with core lipids to form very low density lipoproteins by a two-step process that can be dissociated biochemically.  (+info)

Perfluorooctanoic acid, a peroxisome-proliferating hypolipidemic agent, dissociates apolipoprotein B48 from lipoprotein particles and decreases secretion of very low density lipoproteins by cultured rat hepatocytes. (2/248)

The hypolipidemic effect is evoked by various peroxisome proliferators. Modulation of gene transcription via peroxisome proliferator-activated receptor (PPAR) is generally responsible for this effect. In addition, we have found a PPAR-independent mechanism in which fibrates, known peroxisome proliferators, decrease hepatic secretion of very low density lipoproteins (VLDL) through inhibition of phosphatidylcholine synthesis via methylation of phosphatidylethanolamine (PE) (T. Nishimaki-Mogami et al., Biochim. Biophys. Acta 1304 (1996) 21-31). In the present study, we show a novel mechanism by which perfluorooctanoic acid (PFOA), a potent peroxisome proliferator and inhibitor of PE methylation, exerts its hypolipidemic effect. PFOA (100 microM) added to the medium rapidly decreased the secretion of triglyceride by cultured rat hepatocytes, which was independent of the activity of cellular PE methylation. Analysis of the density of apoB secreted into the medium showed that PFOA decreased apoB48 in VLDL, but increased apoB48 in the bottom d>1.21 fraction. This lipid-poor apoB48 was also generated by incubating medium that had been harvested from control cells with PFOA, indicating that PFOA has the ability to dissociate apoB48 from lipoprotein particles. Exposure of cells to PFOA for 2 h prior to the experiment was sufficient to generate lipid-poor apoB48, indicating that PFOA exerted its effect intracellularly. Taken together, the data suggest that a strong interaction of PFOA with apoB48 disturbs the association of apoB48 with lipids in the process of intracellular VLDL assembly, thereby inhibiting VLDL secretion. This study shows that the mechanisms of hypolipidemic effect caused by various classes of peroxisome proliferators are diverse.  (+info)

Antipeptide antibodies reveal interrelationships of MBP 200 and MBP 235: unique apoB-specific receptors for triglyceride-rich lipoproteins on human monocyte-macrophages. (3/248)

Two human monocyte-macrophage (HMM) membrane binding proteins, (MBP) 200 and 235, are receptor candidates that bind to the apolipoprotein (apo)B-48 domain in triglyceride-rich lipoproteins for uptake independent of apoE. Microsequence analysis of the purified reduced MBP 200R characterized tryptic peptides of MBP 200R. A synthetic peptide mimicking a unique, unambiguous 10-residue sequence (AEGLMVTGGR) induced antipeptide antibodies that specifically recognized MBP 200, 235 and 200R, in 1- and 2-dimensional analyses, indicating 1) the ligand binding protein was sequenced and 2) MBP 200 and 235 yielded MBP 200R upon reduction. These antibodies identified the MBPs in human blood-borne, THP-1, U937 MMs, and endothelial cells (EC) but not in human fibroblasts or Chinese hamster ovary (CHO) cells. Fluorescence activated cell sorting (FACS) analysis located the MBPs on the MM surface as necessary for receptor function. The 10-residue, unambiguous MBP 200-derived sequence is unique, with no matches in extant protein databases. Antipeptide antibodies bind to the MBPs in reticuloendothelial cells that have this receptor activity, but not to proteins in cells that lack this receptor activity. These studies provide the first direct protein sequence and immunochemical data that a new, unique apoB receptor for triglyceride-rich lipoproteins exists in human monocytes, macrophages, and endothelial cells.  (+info)

Isolated rabbit enterocytes as a model cell system for investigations of chylomicron assembly and secretion. (4/248)

A method is described for the isolation of viable enterocytes from rabbit small intestine. The procedure can also be used to isolate populations of epithelial cells from the crypt/villus gradient. The isolated enterocytes synthesized and secreted apoB-48 and triacylglycerol in particles of the density of chylomicrons. Secretion was stimulated by addition of bile salt/lipid micelles. Pulse-chase experiments demonstrated that newly synthesized apoB-48 is degraded intracellularly and that degradation is inhibited by provision of lipid micelles, suggesting that regulation of chylomicron assembly and secretion is broadly similar to that of very low density lipoprotein assembly in hepatocytes. This procedure for preparation of isolated enterocytes will provide a useful model system for investigation of the molecular details of chylomicron assembly.  (+info)

Impaired postprandial clearance of squalene and apolipoprotein B-48 in post-menopausal women with coronary artery disease. (5/248)

It is not known in detail whether postprandial lipaemia is associated with coronary artery disease (CAD) in women. To investigate this, we administered an oral vitamin A/squalene/fat meal to 24 post-menopausal women with angiographically proven CAD who were not taking hormone replacement therapy, and to 30 healthy controls (18 without and 12 with hormone replacement therapy) to evaluate the effects of CAD on postprandial lipoprotein metabolism. This was done by assessing squalene, triacylglycerols, retinyl palmitate and apolipoprotein B-48 (apoB-48) during the subsequent 24 h. The subjects with CAD had significantly higher fasting concentrations of squalene and apoB-48 in triacylglycerol-rich lipoproteins (TGRL) compared with the controls. The postprandial areas under the incremental curve of TGRL apoB-48, chylomicrons, very-low-density lipoprotein (VLDL) and TGRL squalene, and of retinyl palmitate in VLDL only, were significantly higher in women with CAD than in controls. Adjustment for fasting values did not eliminate the differences in postprandial squalene and apoB-48 between CAD and controls. The postprandial responses of control subjects were not influenced by hormone replacement therapy. The peaks of squalene and retinyl palmitate of the controls, but not of the women with CAD, occurred significantly earlier (P<0.01 for both) in chylomicrons than in VLDL. The findings suggest that lipoproteins that accumulate postprandially are labelled by dietary squalene, and that these lipoproteins may be atherogenic in post-menopausal women.  (+info)

Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. (6/248)

BACKGROUND: Alimentary lipemia has been associated with coronary heart disease and common carotid artery intima-media thickness (IMT). This study was designed to investigate the relations of subclasses of postprandial triglyceride-rich lipoproteins (TRLs) with IMT. METHODS AND RESULTS: Ninety-six healthy 50-year-old men with an apolipoprotein (apo) E3/E3 genotype underwent an oral fat tolerance test and B-mode carotid ultrasound examination. The apo B-48 and apo B-100 contents of each fraction of TRLs were determined as a measure of chylomicron remnant and VLDL particle concentrations. In the fasting state, LDL cholesterol (P<0.05) and basal proinsulin (P<0. 05) were significantly related to IMT, whereas HDL cholesterol, plasma triglycerides, and insulin were not. In the postprandial state, plasma triglycerides at 1 to 4 hours (P<0.01 at 2 hours), total triglyceride area under the curve (AUC) (P<0.05), incremental triglyceride AUC (P<0.01), and the large VLDL (Sf 60 to 400 apo B-100) concentration at 3 hours (P<0.05) were significantly related to IMT. Multivariate analyses showed that plasma triglycerides at 2 hours, LDL cholesterol, and basal proinsulin were consistently and independently related to IMT when cumulative tobacco consumption, alcohol intake, waist-to-hip circumference ratio, and systolic blood pressure were included as confounders. CONCLUSIONS: These results provide further evidence for postprandial triglyceridemia as an independent risk factor for early atherosclerosis and also suggest that the postprandial triglyceridemia is a better predictor of IMT than particle concentrations of individual TRLs.  (+info)

Delayed clearance of postprandial large TG-rich particles in normolipidemic carriers of LPL Asn291Ser gene variant. (7/248)

The carrier frequency of Asn291Ser polymorphism of the lipoprotein lipase (LPL) gene is 4;-6% in the Western population. Heterozygotes are prone to fasting hypertriglyceridemia and low high density lipoprotein (HDL) cholesterol concentrations especially when secondary factors are superimposed on the genetic defect. We studied the LPL Asn291Ser gene variant as a modulator of postprandial lipemia in heterozygote carriers. Ten normolipidemic carriers were compared to ten control subjects, who were selected to have similar age, sex, BMI, and apolipoprotein (apo)E-phenotype. The subjects were given a lipid-rich mixed meal and their insulin sensitivity was determined by euglycemic hyperinsulinemic clamp technique. The two groups had comparable fasting triglycerides and glucose utilization rate during insulin infusion, but fasting HDL cholesterol was lower in carriers (1.25 +/- 0.05 mmol/L) than in the control subjects (1. 53 +/- 0.06 mmol/L, P = 0.005). In the postprandial state the most pronounced differences were found in the very low density lipoprotein 1 (VLDL1) fraction, where the carriers displayed higher responses of apoB-48 area under the curve (AUC), apoB-100 AUC, triglyceride AUC, and retinyl ester AUC than the control subjects. The most marked differences in apoB-48 and apoB-100 concentrations were observed late in the postprandial period (9 and 12 h), demonstrating delayed clearance of triglyceride-rich particles of both hepatic and intestinal origin. Postprandially, the carriers exhibited enrichment of triglycerides in HDL fraction. Thus, in normolipidemic carriers the LPL Asn291Ser gene variant delays postprandial triglyceride, apoB-48, apoB-100, and retinyl ester metabolism in VLDL1 fraction and alters postprandial HDL composition compared to matched non-carriers.  (+info)

Human apolipoprotein A-I kinetics within triglyceride-rich lipoproteins and high density lipoproteins. (8/248)

Stable isotope methodology was used to determine the kinetic behavior of apolipoprotein (apo) A-I within the triglyceride-rich lipoprotein (TRL) fraction and to compare TRL apoA-I kinetics with that of apoA-I in high density lipoprotein (HDL) and TRL apoB-48. Eight subjects (5 males and 3 females) over the age of 40 were placed on a baseline average American diet and after 6 weeks received a primed-constant infusion of [5,5,5-(2)H(3)]-l-leucine for 15 h while consuming small hourly meals of identical composition. HDL and TRL apoA-I and TRL apoB-48 tracer/tracee enrichment curves were obtained by gas chromatography;-mass spectrometry. Data were fitted to a compartmental model to determine the fractional secretion rates of apoA-I and apoB-48 within each lipoprotein fraction. Mean plasma apoA-I levels in TRL and HDL fractions were 0. 204 +/- 0.057 and 134 +/- 15 mg/dl, respectively. The mean fractional catabolic rate (FCR) of TRL apoA-I was 0.250 +/- 0.069 and HDL apoA-I was 0.239 +/- 0.054 pools/day, with mean estimated residence times (RT) of 4.27 and 4.37 days, respectively. The mean TRL apoB-48 FCR was 5.2 +/- 2.0 pools/day and the estimated mean RT was 5.1 +/- 1.8 h. Our results indicate that apoA-I is catabolized at a slower rate than apoB-48 within TRL, and that apoA-I within TRL and HDL fractions are catabolized at similar rates.  (+info)