Influence of maternal nutrition on messenger RNA expression of placental angiogenic factors and their receptors at midgestation in adolescent sheep. (25/368)

Previous studies have shown that placental growth and pregnancy outcome are severely compromised in adolescent ewes overnourished to promote rapid maternal growth. Using this paradigm, the aim of the present study was to investigate expression of the major angiogenic factors and their receptors in the placenta at the onset of the most rapid phase of fetal growth. Singleton pregnancies to a single sire were established by embryo transfer, and thereafter, adolescent dams were offered a high or moderate nutrient intake predicted to induce compromised or normal fetoplacental size at term, respectively. Ovine-specific oligonucleotide probe and primer sets for several angiogenic factors and their receptors were developed for quantitative real-time reverse transcription-polymerase chain reaction determination of placentome mRNA expression at Day 81 of gestation. Total placentome weight and fetal weight were equivalent in high- compared with moderate-intake groups at this stage of gestation. Placentome expression of the angiogenic factors, vascular endothelial growth factor, angiopoietins 1 and 2, and nitric oxide synthase 3, were reduced in overfed ewes. Similarly, level of expression of vascular endothelial growth factor/vascular permeability factor receptor (FLT1) was less in overfed ewes. Thus, in the adolescent, maternal overnutrition has a negative impact on midgestation placental angiogenic factor/ receptor expression. This may impact placental vascularity and explain why uteroplacental mass, blood flow, and nutrient uptake are compromised in late pregnancy, resulting in low-birth-weight offspring.  (+info)

CARP, a cardiac ankyrin repeat protein, is up-regulated during wound healing and induces angiogenesis in experimental granulation tissue. (26/368)

Cardiac ankyrin repeat protein (CARP) was identified by subtractive hybridization as one of a group of genes that are rapidly modulated by acute wounding of mouse skin. Quantitative RT-PCR showed that CARP was strongly induced during the first day after wounding (157.1-fold), and the high level persisted for up to 14 days. Immunohistochemistry and in situ hybridization revealed that CARP was expressed in skeletal muscle, vessel wall, hair follicle, inflammatory cells, and epidermis in the wound area. To examine the effects of CARP on wound healing, we developed an adenoviral CARP vector to treat subcutaneously implanted sponges in either rats or Flk-1(LacZ) knock-in mice. Four days after infection, CARP-infected sponges in rats showed a remarkable increase in the vascular component in granulation tissue as compared to Ad-LacZ controls. This result was confirmed by CD34 immunostaining. By 7 days post-infection of sponge implants in Flk-1(LacZ) knock-in mice, granulation tissue showed many more LacZ-positive cells in Ad-CARP-infected sponges than in virus controls. Ad-CARP treatment also induced neovascularization and increased blood perfusion in rabbit excisional wounds in and ischemic rat wounds. These findings indicate that CARP could play a unique role in therapeutic angiogenesis during wound healing.  (+info)

Innate immunity and angiogenesis. (27/368)

Activation of an innate immune response is among the first lines of defense after tissue injury. Restoring blood flow to the site of injured tissue is often a necessary prerequisite for mounting an initial immune response to pathogens and for subsequent initiation of a successful repair of wounded tissue. The multiple links among pathogen recognition and suppression, increased angiogenesis, and tissue repair are the topics of this review, which examines of the roles of antimicrobial peptides, mammalian toll-like receptors (TLRs), inflammatory cytokines, and putative "danger" signals, among other signaling pathways, in triggering, sustaining, and then terminating an angiogenic response.  (+info)

The splenic microenvironment is a source of proangiogenesis/inflammatory mediators accelerating the expansion of murine erythroleukemic cells. (28/368)

The stromal compartments of hematopoietic organs (eg, spleen) are known to influence the viability and growth of diseased hematopoietic progenitors. Here we have used Friend murine leukemia virus (F-MuLV)-induced erythroleukemia to investigate factors of the splenic microenvironment that may make it fertile for the expansion and survival of malignant erythroblasts. We found that splenectomized, erythroleukemic mice exhibited extended survival compared with age-matched sham controls. In vitro, the proliferation of primary erythroleukemic cells cocultured with leukemic-derived splenic adherent cells or their conditioned media was found to be significantly higher than that observed in cocultures with healthy-derived adherent splenic cells. Cytokine protein arrays revealed that F-MuLV-infected splenocytes secreted elevated levels of interleukin-6 (IL-6), vascular endothelial growth factor-A (VEGF-A), macrophage chemoattractant protein-5 (MCP-5), soluble tumor necrosis factor receptor-1 (sTNFR1), IL-12p70, tumor necrosis factor-alpha (TNF-alpha), and IL-2 over normal splenocytes. Medium supplemented with both VEGF-A and MCP-5 could sustain proliferation of primary erythroleukemic cells in vitro, and significant proliferative suppression was observed upon addition of neutralizing antibodies to either of these factors. Furthermore, in vivo administration of a neutralizing antibody to VEGF-A extended survival times of erythroleukemic mice in comparison with controls. These findings suggest that VEGF-A and MCP-5 are potentially pivotal paracrine mediators occurring within the diseased splenic microenvironment capable of promoting disease acceleration and expansion of erythroleukemic blasts.  (+info)

Capillary supply and gene expression of angiogenesis-related factors in murine skeletal muscle following denervation. (29/368)

Capillary supply of skeletal muscle decreases during denervation. To gain insight into the regulation of this process, we investigated capillary supply and gene expression of angiogenesis-related factors in mouse gastrocnemius muscle following denervation for 4 months. Frozen transverse sections were stained for alkaline phosphatase to detect endogenous enzyme in the capillary endothelium. The mRNA for angiogenesis-related factors, including hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/Flk-1), fms-like tyrosine kinase (Flt-1), angiopoietin-1 and tyrosine kinase with Ig and epidermal growth factor(EGF) homology domain 2 (Tie-2), was analysed using a semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The fibre cross-sectional area after denervation was about 20% of the control value, and the capillary to fibre ratio was significantly lower in denervated than in control muscles. The number of capillaries around each fibre also decreased to about 40% of the control value. These observations suggest that muscle capillarity decreases in response to chronic denervation. RT-PCR analysis showed that the expression of VEGF mRNA was lower in denervated than in control muscles, while the expression of HIF-1alpha mRNA remained unchanged. The expression levels of the KDR/Flk-1 and Flt-1 genes were decreased in the denervated muscle. The expression levels of angiopoietin-1 but not Tie-2 genes were decreased in the denervated muscle. These findings indicate that reduction in the expression of mRNAs in the VEGF/KDR/Flk-1 and Flt-1 as well as angiopoietin-1/Tie-2 signal pathways might be one of the reasons for the capillary regression during chronic denervation.  (+info)

Prolonged HCG action affects angiogenic substances and improves follicular maturation, oocyte quality and fertilization competence in patients with polycystic ovarian syndrome. (30/368)

BACKGROUND: The aim of this study was to determine whether, in polycystic ovarian syndrome (PCOS) patients, HCG action prolonged for 4 h improves the action of angiogenic substances [ovarian renin angiotensin system and vascular endothelial growth factor (VEGF)], and consequently follicular maturation, oocyte quality and oocyte fertilization competence. METHODS: In this prospective study 20 patients with PCOS undergoing IVF were included. Oocyte retrieval was carried out either 34 or 38 h after HCG administration. Each follicle was analysed for prorenin, active renin, VEGF and estradiol. Oocytes were evaluated for quality (mature, immature, degenerated oocytes), as were the embryos (low or high). RESULTS: In the HCG +38 h group there were 245 follicles, and in the HCG +34 h group 240 follicles. In the HCG +38 h group, log active renin was lower (2.78 +/- 0.20 versus 2.91 +/- 0.25; P < 0.001) and VEGF higher (2276.0 +/- 790.1 versus 1946.6 +/- 954.5 pg/ml; P < 0.001). The odds ratio for obtaining oocytes from follicles was 1.6 [95% confidence interval (CI) 1.1-2.6; P = 0.02], and for developing high quality embryos 7.6 (95% CI 2.8-20.9; P < 0.001) in favour of the HCG +38 h group. CONCLUSIONS: Follicular maturation and oocyte quality are related to the intrafollicular influences of active renin and VEGF in a time-dependent manner after HCG administration, whereas fertilization competence is related to VEGF only.  (+info)

Placental angiogenesis in sheep models of compromised pregnancy. (31/368)

Because the placenta is the organ that transports nutrients, respiratory gases and wastes between the maternal and fetal systems, development of its vascular beds is essential to normal placental function, and thus in supporting normal fetal growth. Compromised fetal growth and development have adverse health consequences during the neonatal period and throughout adult life. To establish the role of placental angiogenesis in compromised pregnancies, we first evaluated the pattern of placental angiogenesis and expression of angiogenic factors throughout normal pregnancy. In addition, we and others have established a variety of sheep models to evaluate the effects on fetal growth of various factors including maternal nutrient excess or deprivation and specific nutrients, maternal age, maternal and fetal genotype, increased numbers of fetuses, environmental thermal stress, and high altitude (hypobaric) conditions. Although placental angiogenesis is altered in each of these models in which fetal growth is adversely affected, the specific effect on placental angiogenesis depends on the type of 'stress' to which the pregnancy is subjected, and also differs between the fetal and maternal systems and between genotypes. We believe that the models of compromised pregnancy and the methods described in this review will enable us to develop a much better understanding of the mechanisms responsible for alterations in placental vascular development.  (+info)

Common denominator procedure: a novel approach to gene-expression data mining for identification of phenotype-specific genes. (32/368)

MOTIVATION: We have established a novel data mining procedure for the identification of genes associated with pre-defined phenotypes and/or molecular pathways. Based on the observation that these genes are frequently expressed in the same place or in close proximity at about the same time, we have devised an approach termed Common Denominator Procedure. One unusual feature of this approach is that the specificity and probability to identify genes linked to the desired phenotype/pathway increase with greater diversity of the input data. RESULT: To show the feasibility of our approach, the Cancer Genome Anatomy Project expression data combined with a defined set of angiogenic factors was used to identify additional and novel angiogenesis-associated genes. A multitude of these additional genes were known to be associated with angiogenesis according to published data, verifying our approach. For some of the remaining candidate genes, application of a high-throughput functional genomics platform (XantoScreen) provided further experimental evidence for association with angiogenesis.  (+info)