Differential modulation of the gamma-aminobutyric acid type C receptor by neuroactive steroids. (1/29)

Gamma-aminobutyric acid type C receptor channels (GABA(C)Rs) composed of rho subunits are pharmacologically distinct from GABA(A) receptor channels (GABA(A)Rs). This difference is illustrated by the insensitivity of homo-oligomeric rho(1) receptor channels to many known modulators of GABA(A)Rs, such as barbiturates and benzodiazepines. A number of endogenous metabolites of corticosterone and progesterone, known as neuroactive steroids, compose yet another class of compounds that can modulate GABA(A)Rs. Here, several neuroactive steroids are shown to also modulate the rho(1) receptor channel. 5alpha-Pregnane-3alpha,21-diol-20-one (allotetrahydrodeoxycorticosterone), 5alpha-pregnane-3alpha-ol-11, 20-dione (alphaxalone), and 5alpha-pregnane-3alpha-ol-20-one (allopregnanolone) potentiated the GABA-evoked currents from rho(1) receptor channels and concomitantly altered the deactivation kinetics by prolonging the decay time. In contrast, 5beta-pregnane-3alpha-ol-20-one (pregnanolone), 5beta-pregnane-3, 20-dione (5beta-dihydroprogesterone), and 5beta-pregnane-3alpha, 21-diol-20-one (tetrahydrodeoxycorticosterone), all potentiators of GABA(A)Rs, inhibited the GABA-elicited currents of the rho(1) receptor channel. In comparison to GABA(A)Rs, the modulation of rho(1) receptor channels by these neuroactive compounds occurred with relatively high concentrations of the neuroactive steroids and was more prominent in the presence of low concentrations of GABA, equivalent to fractions of the EC(50) value of the rho(1) receptor channel. Structural comparison of these six neuroactive steroids reveals that the key parameter in determining the mode of modulation for the rho(1) receptor channel is the position of the hydrogen atom bound to the fifth carbon, imposing a trans- or cis-configuration in the backbone structure. This is the first demonstration of isomeric compounds that can differentially modulate the activity of the rho(1) receptor channel.  (+info)

Self-augmentation effect of male-specific products on sexually differentiated progesterone metabolism in adult male rat liver microsomes. (2/29)

It is well known that several 3-keto-4-ene steroids such as progesterone and testosterone are metabolized in a gender-specific or -predominant manner by adult rat liver microsomes. In the male, these steroids are primarily metabolized into two oxidized (16alpha-hydroxyl and 6beta-hydroxyl) products mainly by the respective, male-specific cytochrome P450 subforms, CYP2C11 and CYP3A2, while they are primarily metabolized into the 5alpha-reduced products by female-predominant 5alpha-reductase in the female. These sexually differentiated enzyme activities are largely regulated at the transcription level under endocrine control. In the present study, we show that unlabeled 16alpha-hydroxyprogesterone and 6beta-hydroxyprogesterone inhibited the 5alpha-reductive [(3)H]progesterone metabolism by adult male rat liver microsomes without significantly inhibiting the CYP2C11 and CYP3A2 activities producing themselves, whereas 3alpha-hydroxy-5alpha-pregnan-20-one and 5alpha-pregnane-3,20-dione not only stimulated the 5alpha-reductive metabolism producing themselves but also inhibited the male-specific oxidative metabolism. This finding compels us to propose a novel hypothesis that adult male rat liver microsomes may possess a self-augmentation system regulated by the male-specific products on sexually differentiated steroid metabolism, besides regulation by gene expressions of the related enzymes.  (+info)

Substrate specificity of human 3(20)alpha-hydroxysteroid dehydrogenase for neurosteroids and its inhibition by benzodiazepines. (3/29)

In this report, we compared kinetic constants and products in the reduction of the neurosteroids, 3alpha,5alpha-tetrahydroprogesterone (3alpha,5alpha THP) and 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-THDOC), and their precursors, 5alpha-dihydroprogesterone (5alpha-DHP), 5alpha-dihydrodeoxycorticosterone (5alpha-DHDOC) and progesterone, by three isoenzymes (AKR1C1, AKR1C2 and AKR1C3) of human 3alpha-hydroxysteroid dehydrogenase. AKR1C1 efficiently reduced 3alpha,5alpha-THP, 5alpha-DHP and progesterone to their 20alpha-hydroxy metabolites, and slowly converted 5alpha-DHDOC to 3alpha,5alpha-THDOC. AKR1C2 exhibited low 20-ketoreductase activity for 3alpha,5alpha-THP and moderate 3-ketoreductase activity for 5alpha-DHP and 5alpha-DHDOC. 3alpha,5alpha-THDOC was not reduced by the two isoenzymes. No significant activity for the steroids was detected with AKR1C3. The results suggest that AKR1C2 is involved in the neurosteroid synthesis, but AKR1C1 decreases the neurosteroid concentrations in human brain by inactivating 3alpha,5alpha-THP and eliminating the precursors from the synthetic pathways. In addition, we found that the several benzodiazepines inhibited the three isoenzymes noncompetitively with respect to the substrate. Although cloxazolam was a potent and specific inhibitor of AKR1C3, diazepam, estazolam, flunitrazepam, medazepam and nitrazepam, that inhibited AKR1C1 and AKR1C2, may influence the neurosteroid metabolism.  (+info)

Branched fatty acids in dairy and beef products markedly enhance alpha-methylacyl-CoA racemase expression in prostate cancer cells in vitro. (4/29)

An enzyme previously identified as alpha-methylacyl-CoA racemase (AMACR) is overexpressed in high-grade prostatic intraepithelial neoplasia and in a majority (60-100%) of prostate cancers (CaPs) as compared with normal and benign hyperplastic lesions of the prostate, where it is minimally expressed. This enzyme is required for the beta-oxidation of branched-chain fatty acids, which include phytanic acid and its alpha-oxidation product, pristanic acid. Interestingly, there is an established correlation between CaP risk and the consumption of dairy and beef products, which also contain marked quantities of these two phytols. In this context, it has also been reported that sex steroids influence lipogenesis through the induction of fatty acid synthase in CaP-derived cell lines and CaP tissues. These findings indicate a potential role for AMACR and the possible influence of sex steroids in both the early development and subsequent progression of CaP. Despite the recent interest in AMACR as a histological marker for CaP, little is known about the regulation of this enzyme and its role in CaP development. To identify potential AMACR-regulating factors, we treated LNCaP cells (an androgen-responsive CaP-derived cell line) and NPrEC cells (a normal prostate basal epithelial cell line) with increasing concentrations of pristanic acid, phytanic acid, 5alpha-dihydrotestosterone, and 17beta-estradiol. Neither the biologically potent androgen 5alpha-dihydrotestosterone nor 17beta-estradiol had any apparent effect on AMACR expression at the protein or transcriptional levels in either cell line. Conversely, pristanic acid and, to a much lesser extent, phytanic acid markedly increased AMACR protein levels selectively in the LNCaP cell line, but not the NPrEC cell line. However, no change was measured at the transcriptional level in either cell line. AMACR is therefore significantly increased at the protein level in CaP cells, through what appears to be the stabilizing effect of the same fatty acids that are present at appreciable concentrations in beef and dairy products, which have been associated with CaP risk. Our findings therefore provide a link between the consumption of dietary fatty acids and the enhanced expression of AMACR, an enzyme that may play an important role in genesis and progression of CaP.  (+info)

Androgen inhibition of MAP kinase pathway and Elk-1 activation in proliferating osteoblasts. (5/29)

Non-aromatizable androgens have significant beneficial effects on skeletal homeostasis independently of conversion to estradiol, but the effects of androgens on bone cell metabolism and cell proliferation are still poorly understood. Using an osteoblastic model with enhanced androgen responsiveness, MC3T3-E1 cells stably transfected with androgen receptor (AR) under the control of the type I collagen promoter (colAR-MC3T3), the effects of androgens on mitogenic signaling were characterized. Cultures were treated with the non-aromatizable androgen 5alpha-dihydrotestosterone (DHT) and the effects on osteoblast viability were determined as measured by an MTT assay. A complex response was observed in that continuous short-term DHT treatment enhanced osteoblast viability, but with longer-term DHT treatment inhibition was observed. The inhibition by DHT was prevented by the specific AR antagonist hydroxyflutamide, and was also observed in primary cultures of normal rat calvarial osteoblasts. In order to identify potential mediators of this effect, mitogenic pathway-specific cDNA microarrays were interrogated. Reduced hybridization of several genes important in MAP kinase-mediated signaling was observed, with the most dramatic effect on Elk-1 expression. Analysis of phosphorylation cascades demonstrated that DHT treatment inhibited phosphoERK1/2 levels, MAP kinase activation of Elk-1, Elk-1 protein and phosphoElk-1 levels, and downstream AP-1/luciferase reporter activity. Together, these data provide the first evidence that androgen inhibition of the MAP kinase signaling pathway is a potential mediator of osteoblast growth, and are consistent with the hypothesis that the MAP cascade may be a specific downstream target of DHT.  (+info)

Insight into the mechanism of action of neuroactive steroids. (6/29)

Rho(1) receptor-channels (rho(1)Rs) are GABA-gated chloride channels that exhibit slow kinetics, little desensitization, and inert pharmacology to most anesthetics, except for neuroactive steroids (NSs). NSs differentially modulate rho(1)Rs dependent on the steric arrangement of the hydrogen atom at the fifth carbon position. In particular, the NS allotetrahydrodeoxycorticosterone (5alpha-THDOC) potentiates, whereas 5beta-pregnane-3alpha-ol-20-one (pregnanolone) and 5beta-dihydroprogesterone (5beta-DHP) inhibit rho(1) GABA currents. Here, we used Xenopus laevis oocytes expressing rho(1)Rs as a model system to study the mechanism of NS modulation. The second transmembrane residue, Ile307, was mutated to 16 amino acids. Subsequent testing of these mutants with 5alpha- and 5beta-NSs, at equivalent GABA activity, showed the following paradigm. For 5beta-DHP, Ile307 mutation either altered the degree of inhibition or entirely reversed the direction of modulation, rendering 5beta-DHP a potentiator. Dependent on the mutation, pregnanolone remained an inhibitor, transformed into a potentiator, or converted to inhibitor and potentiator based on concentration. The extent of mode reversal for both 5beta compounds showed a correlation with the side-chain hydrophilicity of the 307 residue. In contrast, Ile307 substitutions did not alter the direction of modulation for 5alpha-THDOC but caused a significant increase in the level of potentiation. Paradoxical to their impact on the mode and/or the degree of modulation, none of the mutations altered the concentration range producing the response significantly for any of the above NSs. Moreover, preincubation of Ile307 mutants with 5alpha or 5beta alone produced an equivalent effect on the activation time course. Based on the above data, a universal model is presented wherein anesthetic compounds like NSs can potentiate or inhibit the activity of ligand-gated ion channels distinct from interaction with alternative binding sites.  (+info)

Modulation of the firing activity of female dorsal raphe nucleus serotonergic neurons by neuroactive steroids. (7/29)

Important gender differences in mood disorders result in a greater susceptibility for women. Accumulating evidence suggests a reciprocal modulation between the 5-hydroxytryptamine (5-HT) system and neuroactive steroids. Previous data from our laboratory have shown that during pregnancy, the firing activity of 5-HT neurons increases in parallel with progesterone levels. This study was undertaken to evaluate the putative modulation of the 5-HT neuronal firing activity by different neurosteroids. Female rats received i.c.v. for 7 days a dose of 50 micro g/kg per day of one of the following steroids: progesterone, pregnenolone, 5beta-pregnane-3,20-dione (5beta-DHP), 5beta-pregnan-3alpha-ol,20-one, 5beta-pregnan-3beta-ol,20-one, 5alpha-pregnane-3,20-dione, 5alpha-pregnan-3alpha-ol,20-one (allopregnanolone, 3alpha,5alpha-THP), 5alpha-pregnane-3beta-ol,20-one and dehydroepiandrosterone (DHEA). 5beta-DHP and DHEA were also administered for 14 and 21 days (50 micro g/kg per day, i.c.v.) as well as concomitantly with the selective sigma 1 (sigma1) receptor antagonist NE-100. In vivo, extracellular unitary recording of 5-HT neurons performed in the dorsal raphe nucleus of these rats revealed that DHEA, 5beta-DHP and 3alpha,5alpha-THP significantly increased the firing activity of the 5-HT neurons. Interestingly, 5beta-DHP and DHEA showed different time-frames for their effects with 5beta-DHP having its greatest effect after 7 days to return to control values after 21 days, whereas DHEA demonstrated a sustained effect over the 21 day period. NE-100 prevented the effect of DHEA but not of 5beta-DHP, thus indicating that its sigma1 receptors mediate the effect of DHEA but not that of 5beta-DHP. In conclusion, our results offer a cellular basis for potential antidepressant effects of neurosteroids, which may prove important particularly for women with affective disorders.  (+info)

Fine tuning of the specificity of an anti-progesterone antibody by first and second sphere residue engineering. (8/29)

The specificity of anti-progesterone P15G12C12G11 antibody was improved by combination of in vitro scanning saturation mutagenesis and error-prone PCR. The most evolved mutant is able to discriminate against 5beta- or 5alpha-dihydroprogesterone, 23 and 15 times better than the starting antibody, while maintaining the affinity for progesterone that remains in the picomolar range. The high level of homology with anti-progesterone monoclonal antibody DB3 allowed the construction of three-dimensional models of P15G12C12G11 based on the structures of DB3 in complex with various steroids. These models together with binding data, derived from site-directed mutagenesis, were used to build a phage library in which five first sphere positions in complementarity-determining regions 2H and 3L were varied. Variants selected by an initial screening in competition against a large excess of 5beta- or 5alpha-dihydroprogesterone were characterized by a convergent amino acid signature different from that of the wild-type antibody and had lower cross-reactivity. Binding properties of this first set of mutants were further improved by the addition of second sphere mutations selected independently from an error-prone library. The three-dimensional models of the best variant show changes in the antigen binding site that explain well the increase in selectivity. The improvements are partly linked to a change in the canonical class of the light chain third hypervariable loop.  (+info)