Functional analysis of the promoter of the yeast SNQ2 gene encoding a multidrug resistance transporter that confers the resistance to 4-nitroquinoline N-oxide. (1/242)

The yeast gene SNQ2, which encodes a multidrug resistance ABC superfamily protein, is required for resistance to the mutagen 4-nitroquinoline N-oxide (4-NQO). The expression of the SNQ2 gene is under the control of a regulatory network that involves the transcription factor Yrr1p, as well as Pdr1p/Pdr3p (Cui et al., Mol. Microbiol., 29, 1307-1315 (1998)). By 5'-deletion analysis of the promoter by using SNQ2-lacZ fusion constructs, four regions: -745 to -639 (region I), -639 to -578 (region II), -548 to -533 (region III) and -533 to -485 (region IV) were found to be important for SNQ2 expression. Genetic analysis suggested that the site in region IV was responsible for the Yrr1p-mediated SNQ2 expression. A consensus motif known for the binding of Pdr1p/Pdr3p (PDRE) was not found in region IV.  (+info)

Inhibition of DNA replicon initiation by 4-nitroquinoline 1-oxide, adriamycin, and ethyleneimine. (2/242)

The effects of three widely differing chemical carcinogens, 4-nitroquinoline 1-oxide, Adriamycin, and ethyleneimine, on DNA replication were studied by pulse labeling of DNA with [3H]thymidine and sedimentation analysis with alkaline sucrose gradients. At doses that reduced the rate of DNA synthesis to 30 to 60% of control values, only ethyleneimine produced damage that resulted in lower molecular weights of parental DNA. All three chemicals inhibited replicon initiation, but to differing extents. Inhibition of replicon initiation was the first clearly identified effect of 4-nitroquinoline 1-oxide and was the main cause of inhibition of DNA synthesis. Ethyleneimine caused severe inhibition of replicon initiation, but blocks to chain elongation also contributed significantly to the inhibition of overall DNA synthesis. Adriamycin affected replicon initiation to a small but significant extent; the primary cause of inhibition of DNA synthesis by this drug was a slowing of the rate of chain elongation. These results indicate that inhibition of replicon initiation is an important mechanism for the action of DNA-damaging agents in mammalian cells and strengthen the concept that control of DNA replication depends on the structural integrity of a chromosomal subunit that consists of several replicons.  (+info)

Inverse correlation between p53 protein levels and DNA repair efficiency in human fibroblast strains treated with 4-nitroquinoline 1-oxide: evidence that lesions other than DNA strand breaks trigger the p53 response. (3/242)

Ionizing radiation-induced stabilization and the resultant transient accumulation of the p53 tumor suppressor protein is impaired in cells from ataxia telangiectasia (AT) patients, indicating a key role for ATM, the gene mutated in AT, upstream in the radiation-responsive p53 signaling pathway. Activation of this pathway is generally assumed to be triggered by DNA strand breaks produced directly following genotoxic stress or indirectly during excision repair of DNA lesions. The aim of this study was to identify the triggering signal for induction of p53 in diploid human dermal fibroblasts treated with 4-nitroquinoline 1-oxide (4NQO), a model environmental carcinogen that produces both DNA strand breaks (like ionizing radiation) and alkali-stable bulky DNA lesions (like UV light). 4NQO treatment of fibroblasts cultured from normal and AT donors and those from patients with the UV-hypersensitivity disorder xeroderma pigmentosum (XP, complementation groups A, E and G) resulted in up-regulation of p53 protein. In normal fibroblasts, there was no temporal relationship between the incidence of DNA strand breaks and levels of p53 protein; >90% of strand breaks and alkali-labile sites were repaired over 2 h following treatment with 1 microM 4NQO, whereas approximately 3 h of post-treatment incubation was required to demonstrate a significant rise in p53 protein. In contrast, exposure of normal fibroblasts to gamma-rays resulted in a rapid up-regulation of p53 and the level peaked at 2 h post-irradiation. XP cells with a severe deficiency in the nucleotide excision repair pathway showed abnormally high levels of p53 protein in response to 4NQO treatment, indicating that lesions other than incision-associated DNA strand breaks trigger p53 up-regulation. We observed a consistent, inverse correlation between the ability of the various fibroblast cultures to induce p53 following 4NQO treatment and their DNA repair efficiencies. Treatment with 0.12 microM 4NQO, for example, caused a >2-fold up-regulation of p53 in excision repair-deficient (AT, XPA and XPG) strains without eliciting any effect on p53 levels in repair-proficient (normal and XPE) strains. We conclude that up-regulation of p53 by 4NQO is mediated solely by an ATM-independent mechanism and that the p53 response is primarily triggered by persistent alkali-stable 4NQO-DNA adducts.  (+info)

Development of a new bioluminescent mutagenicity assay based on the Ames test. (4/242)

A newly developed rapid mutagenicity assay based on the adenosine triphosphate (ATP)-bioluminescence technique and the Ames test is described. Salmonella typhimurium strains TA98 and TA100 were exposed in an appropriate liquid medium to the direct mutagens 4-nitroquinoline-N-oxide and methyl methanesulphonate, respectively, and to the indirect mutagen 2-aminoanthracene. Both auxotrophic and prototrophic growth were monitored throughout the incubation period as variations in the intracellular ATP levels by means of the luciferin-luciferase assay. After 9-12 h of incubation a dose-response increase in the levels of ATP was readily detected. In order to demonstrate that this increase was due to the growth of revertant bacteria, aliquots from each culture were plated on minimal agar plates. A very good correlation between the changes in ATP levels and the appearance of revertant colonies on the plates was found. Given the rapidity of this method as compared with conventional mutagenicity assays, it has potential for industrial and environmental applications. Other potential applications are also discussed.  (+info)

Enzymatic and DNA binding properties of purified WRN protein: high affinity binding to single-stranded DNA but not to DNA damage induced by 4NQO. (5/242)

Mutations in the WRN gene result in Werner syndrome, an autosomal recessive disease in which many characteristics of aging are accelerated. A probable role in some aspect of DNA metabolism is suggested by the primary sequence of the WRN gene product. A recombinant His-tagged WRN protein (WRNp) was overproduced in insect cells using the baculovirus system and purified to near homogeneity by several chromatographic steps. This purification scheme removes both nuclease and topoisomerase contaminants that persist following a single Ni(2+)affinity chromatography step and allows for unambiguous interpretation of WRNp enzymatic activities on DNA substrates. Purified WRNp has DNA-dependent ATPase and helicase activities consistent with its homology to the RecQ subfamily of proteins. The protein also binds with higher affinity to single-stranded DNA than to double-stranded DNA. However, WRNp has no higher affinity for various types of DNA damage, including adducts formed during 4NQO treatment, than for undamaged DNA. Our results confirm that WRNp has a role in DNA metabolism, although this role does not appear to be the specific recognition of damage in DNA.  (+info)

Regulation of the ribonucleotide reductase small subunit gene by DNA-damaging agents in Dictyostelium discoideum. (6/242)

In Escherichia coli, yeast and mammalian cells, the genes encoding ribonucleotide reductase, an essential enzyme for de novo DNA synthesis, are up-regulated in response to DNA damaging agents. We have examined the response of the rnrB gene, encoding the small subunit of ribonucleotide reductase in Dictyostelium discoideum, to DNA damaging agents. We show here that the accumulation of rnrB transcript is increased in response to methyl methane sulfonate, 4-nitroquinoline-1-oxide and irradiation with UV-light, but not to the ribonucleotide reductase inhibitor hydroxyurea. This response is rapid, transient and independent of protein synthesis. Moreover, cells from different developmental stages are able to respond to the drug in a similar fashion, regardless of the basal level of expression of the rnrB gene. We have defined the cis -acting elements of the rnrB promoter required for the response to methyl methane sulfonate and 4-nitroquinoline-1-oxide by deletion analysis. Our results indicate that there is one element, named box C, that can confer response to both drugs. Two other boxes, box A and box D, specifically conferred response to methyl methane sulfonate and 4-nitroquinoline-1-oxide, respectively.  (+info)

Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. (7/242)

Rsp5 is an E3 ubiquitin-protein ligase of Saccharomyces cerevisiae that belongs to the hect domain family of E3 proteins. We have previously shown that Rsp5 binds and ubiquitinates the largest subunit of RNA polymerase II, Rpb1, in vitro. We show here that Rpb1 ubiquitination and degradation are induced in vivo by UV irradiation and by the UV-mimetic compound 4-nitroquinoline-1-oxide (4-NQO) and that a functional RSP5 gene product is required for this effect. The 26S proteasome is also required; a mutation of SEN3/RPN2 (sen3-1), which encodes an essential regulatory subunit of the 26S proteasome, partially blocks 4-NQO-induced degradation of Rpb1. These results suggest that Rsp5-mediated ubiquitination and degradation of Rpb1 are components of the response to DNA damage. A human WW domain-containing hect (WW-hect) E3 protein closely related to Rsp5, Rpf1/hNedd4, also binds and ubiquitinates both yeast and human Rpb1 in vitro, suggesting that Rpf1 and/or another WW-hect E3 protein mediates UV-induced degradation of the large subunit of polymerase II in human cells.  (+info)

The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. (8/242)

Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.  (+info)