Loading...
(1/231) Paracrine-mediated apoptosis in reproductive tract development.

In mammalian development, the signaling pathways that couple extracellular death signals with the apoptotic machinery are still poorly understood. We chose to examine Mullerian duct regression in the developing reproductive tract as a possible model of apoptosis during morphogenesis. The TGFbeta-like hormone, Mullerian inhibiting substance (MIS), initiates regression of the Mullerian duct or female reproductive tract anlagen; this event is essential for proper male sexual differentiation and occurs between embryonic days (E) 14 and 17 in the rat. Here, we show that apoptosis occurs during Mullerian duct regression in male embryos beginning at E15. Female Mullerian ducts exposed to MIS also exhibited prominent apoptosis within 13 h, which was blocked by a caspase inhibitor. In both males and females the MIS type-II receptor is expressed exclusively in the mesenchymal cell layer surrounding the duct, whereas apoptotic cells localize to the epithelium. In addition, tissue recombination experiments provide evidence that MIS does not act directly on the epithelium to induce apoptosis. Based on these data, we suggest that MIS triggers cell death by altering mesenchymal-epithelial interactions.  (+info)

(2/231) Differential involvement of adrenal and gonadal steroids in anterior and intermediate pituitary pro-opiomelanocortin mRNA expression induced by the endogenous benzodiazepine, octadecaneuropeptide, in adult male rats.

The involvement of the endogenous benzodiazepine, octadecaneuropeptide (ODN), in the regulation of proopiomelanocortin (POMC) mRNA expression at the pituitary level, and the influence of adrenal and gonadal steroids, have been studied using a quantitative in situ hybridization technique. I.c.v. injection of ODN (4 micrograms/kg) in sham-operated rats induced a 17 and 7% decrease in the POMC mRNA expression in anterior and intermediate pituitary lobes respectively. To determine the reciprocal involvement of adrenal and gonadal steroids in this regulation, animals were adrenalectomized and/or castrated. Adrenalectomy significantly increased POMC mRNA expression by 48% at the anterior pituitary level, but induced a 10% decrease of hybridization signal at the intermediate pituitary lobe (vs control sham-operated). Adrenal ablation reversed the effect induced by ODN and increased POMC mRNA expression at the anterior and intermediate pituitary levels by 60 and 10% respectively, compared with control sham-operated. By contrast, castration, which produced a decrease in POMC mRNA in the anterior pituitary and an increase in the intermediate lobe, did not modify the negative influence of ODN observed in sham-operated animals. When rats were adrenalectomized and castrated, the adrenalectomy influence was predominant at the anterior pituitary level, since ODN increased significantly the hybridization signal (+68% vs control sham-operated), while the castration influence was predominant at the intermediate pituitary level, since ODN induced an 11% decrease in POMC mRNA signal compared with control sham-operated. These studies indicate that, in vivo, the decrease in POMC mRNA expression in the anterior and intermediate pituitary induced by an endogenous benzodiazepine is differently modulated by adrenal and gonadal steroids, with a predominant influence of adrenal steroids at the anterior pituitary level and gonadal steroids at the intermediate pituitary level.  (+info)

(3/231) Ptx1 regulates SF-1 activity by an interaction that mimics the role of the ligand-binding domain.

Ptx1 (Pitx1) is a bicoid-related homeobox transcription factor expressed from the onset of pituitary development. It was shown to cooperate with cell-restricted factors, such as Pit1, NeuroD1/PanI and steroidogenic factor 1 (SF-1), to establish a combinatorial code conferring lineage- and promoter-specific gene transcription in the pituitary. Transcriptional synergism between Ptx1 and SF-1 on two SF-1 target genes, pituitary luteinizing hormone beta and Mullerian-inhibiting substance (MIS), requires SF-1 binding to DNA and appears to result from direct physical interaction between these two proteins. The interaction between the C-terminus of Ptx1 and the N-terminal half of SF-1 results in transcriptional enhancement that equals the activity of a constitutively active SF-1 mutant and that may mimic the effect of a still unidentified SF-1 ligand. Thus, the unmasking of SF-1 activity by Ptx1 may represent a developmental mechanism to alleviate the need for SF-1 ligand in transcription and, possibly, at critical times during organogenesis.  (+info)

(4/231) Reversion of the differentiated phenotype and maturation block in Sertoli cells in pathological human testis.

To study the relationship between abnormal Sertoli cell differentiation and spermatogenic impairment, we examined the expression of Sertoli cell markers normally lost at puberty, cytokeratin 18 (CK18), anti-Mullerian hormone (AMH) and M2A antigen, in three children (aged 1-2 years), 50 adults (aged 19-45 years) with obstructive or non-obstructive azoospermia or oligozoospermia, and six patients (aged 1-18 years) with 5 alpha-reductase deficiency. There was CK18 and/or AMH expression, but never M2A antigen expression, associated with spermatogonial arrest or Sertoli cell-only (SCO) syndrome in infertile men. Loss of M2A antigen suggests the transition of Sertoli cells to an adult phenotype, while CK18 and/or AMH expression may be a manifestation of de-differentiation of Sertoli cells. In 5 alpha-reductase deficiency, there was a sequential loss of CK18, M2A antigen and AMH around puberty, associated with partial spermatogenesis. The persistence of immature Sertoli cells expressing M2A antigen was associated with prepubertal seminiferous cords and SCO syndrome. Therefore, 5 alpha-reductase deficiency may prevent the maturation of Sertoli cells, resulting in impairment of spermatogenesis, and loss of M2A antigen expression coincides with a critical step in the Sertoli cell maturation. High follicle stimulating hormone concentrations due to failure of normal Sertoli cell differentiation indicate a normal development pattern of the hypothalamic-pituitary-gonadal axis.  (+info)

(5/231) Anti-Mullerian hormone as a seminal marker for spermatogenesis in non-obstructive azoospermia.

Anti-Mullerian hormone (AMH) also known as Mullerian inhibiting substance or factor, is a Sertoli cell-secreted glycoprotein responsible in male embryos for Mullerian duct regression. However, its role in adults remains unknown. AMH seminal concentrations have been evaluated using an enzyme-linked immunoassay in three groups of young men: group 1, fertile donors (n = 18); group 2, obstructive azoospermia (n = 9) after vasectomy or associated with deferent duct agenesia; and group 3, non-obstructive azoospermia with spermatogenesis deficiency and normal karyotype (n = 23). AMH was present in seminal plasma of most fertile donors at concentrations ranging from undetectable (<3.5 pmol/l) up to 543 pmol/l (geometric mean: 153 pmol/l), higher than the serum level (range <3.5 up to 67 pmol/l, geometric mean: 10.7 pmol/l, n = 13). Seminal AMH concentrations were undetectable in all obstructive azoospermic patients, confirming its testicular origin. In non-obstructive azoospermia (group 3), seminal AMH concentration was lower (range <3. 5-68.5 pmol/l, geometric mean: 17 pmol/l) than in fertile donors (P < 0.003) without correlation with plasma follicle stimulating hormone values. In group 3, comparison of seminal AMH concentration and the results of histological analysis of testicular biopsies revealed that undetectable AMH found in 14 cases was associated in 11 of them with lack of spermatozoa, while detectable concentrations of AMH (10-68.5 pmol/l) found in nine cases were associated in seven of them with persistent spermatogenesis. In the adult, AMH is secreted preferentially towards the seminiferous lumen. Although its relationship with spermatogenesis requires further investigation, our results suggest that seminal AMH may represent a non-invasive marker of persistent hypospermatogenesis in cases of non-obstructive azoospermia which may indicate the likely success of testicular spermatozoa recovery before intracytoplasmic sperm injection.  (+info)

(6/231) Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs.

In mammals, testis development is initiated in the embryo as a response to the expression of the sex-determining gene, SRY. The time course of SRY expression during gonadal differentiation in the male has been described in detail only in mice and sheep. In this study, we used reverse transcription-polymerase chain reaction analysis to define the SRY transcription profile in pig genital ridges. SRY transcripts were first detectable from 23 days postcoitum (dpc), then declined sharply after 35 dpc. None were detected at 60 dpc. In addition, we analyzed temporal expression of other genes known to be involved in mammalian sex determination: WT-1, SF-1, SOX9, and AMH. A key stage seems to be 28 dpc, in which SOX9 expression switches between the male and female, and AMH expression begins to attest to Sertoli cell differentiation and to correspond to seminiferous cord formation in the male. Expression of gonadotropin receptors and aromatase was also investigated in porcine gonads, and we showed that their transcripts were detected very early on, especially in the male: 25 dpc for the LH receptor (rLH) and aromatase, and 28 dpc for the FSH receptor (rFSH). In the female, aromatase transcripts were not detected until 70 dpc, and rFSH expression occurred later: at 45 dpc at the onset of meiosis. Moreover, no difference was observed between the sexes for the onset of rLH transcription at 25 dpc. Such a thorough study has never been performed on pigs; developmental analysis will be useful for investigating sex-reversed gonads and determining ontogeny in intersexuality, a common pathology in pigs.  (+info)

(7/231) The novel epididymal secretory protein ESP13.2 in Macaca fascicularis.

Newly synthesized mammalian spermatozoa undergo critical modifications as they pass along the epididymis. The modifications endow spermatozoa with fertilizing ability and occur largely as a consequence of epididymal gene expression. With this in mind, we here employed a cDNA cloning strategy designed to identify key epididymal gene products. We describe a novel cynomolgus monkey (Macaca fascicularis) epididymal transcript designated cy-ESP13.2, of 690 nucleotides. The putative human ortholog was cloned and is highly conserved. Both cDNA sequences predict small, secretory proteins with a disulfide-stabilized core. Anti-peptide polyclonal antibodies were raised to a predicted cy-ESP13.2 surface loop. Western blotting with these antibodies revealed high-level, epididymis-specific expression of cy-ESP13.2, consistent with the pattern of cy-ESP13.2 mRNA expression assessed by Northern blotting. cy-ESP13.2 protein was of 30 kDa and was readily detectable in epithelial cells lining the efferent ductules, initial segment, and cauda regions of the epididymis, but not on spermatozoa. Similarities to members of the four-disulfide-core family suggest clues to ESP13.2 function.  (+info)

(8/231) Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development.

Mutations were introduced into conserved steroidogenic factor 1 (SF1)- and SOX9-binding sites within the endogenous mouse Mullerian inhibiting substance (Mis) promoter. Male mice homozygous for the mutant SF1-binding site correctly initiated Mis transcription in fetal testes, although at significantly reduced levels. Surprisingly, sufficient MIS was produced to eliminate the MUllerian ducts. In contrast, males homozygous for the mutant SOX9-binding site did not initiate Mis transcription, resulting in pseudohermaphrodites. These studies suggest an essential role for SOX9 in the initiation of Mis transcription, whereas SF1 appears to act as a quantitative regulator of Mis transcript levels, perhaps for influencing non-Mullerian duct tissues. Comparative studies of Mis expression in vertebrates indicate that the Mis promoter receives transcriptional inputs that vary between species but result in the same functional readout.  (+info)