(1/3684) Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation.

The telomerase reverse transcriptase component (TERT) is not expressed in most primary somatic human cells and tissues, but is upregulated in the majority of immortalized cell lines and tumors. Here, we identify the c-Myc transcription factor as a direct mediator of telomerase activation in primary human fibroblasts through its ability to specifically induce TERT gene expression. Through the use of a hormone inducible form of c-Myc (c-Myc-ER), we demonstrate that Myc-induced activation of the hTERT promoter requires an evolutionarily conserved E-box and that c-Myc-ER-induced accumulation of hTERT mRNA takes place in the absence of de novo protein synthesis. These findings demonstrate that the TERT gene is a direct transcriptional target of c-Myc. Since telomerase activation frequently correlates with immortalization and telomerase functions to stabilize telomers in cycling cells, we tested whether Myc-induced activation of TERT gene expression represents an important mechanism through which c-Myc acts to immortalize cells. Employing the rat embryo fibroblast cooperation assay, we show that TERT is unable to substitute for c-Myc in the transformation of primary rodent fibroblasts, suggesting that the transforming activities of Myc extend beyond its ability to activate TERT gene expression and hence telomerase activity.  (+info)

(2/3684) Activation of telomerase and its association with G1-phase of the cell cycle during UVB-induced skin tumorigenesis in SKH-1 hairless mouse.

Telomerase is a ribonucleoprotein enzyme that adds hexanucleotide repeats TTAGGG to the ends of chromosomes. Telomerase activation is known to play a crucial role in cell-immortalization and carcinogenesis. Telomerase is shown to have a correlation with cell cycle progression, which is controlled by the regulation of cyclins, cyclin dependent kinases (cdks) and cyclin dependent kinase inhibitors (cdkis). Abnormal expression of these regulatory molecules may cause alterations in cell cycle with uncontrolled cell growth, a universal feature of neoplasia. Skin cancer is the most prevalent form of cancer in humans and the solar UV radiation is its major cause. Here, we investigated modulation in telomerase activity and protein expression of cell cycle regulatory molecules during the development of UVB-induced tumors in SKH-1 hairless mice. The mice were exposed to 180 mjoules/cm2 UVB radiation, thrice weekly for 24 weeks. The animals were sacrificed at 4 week intervals and the studies were performed in epidermis. Telomerase activity was barely detectable in the epidermis of non-irradiated mouse. UVB exposure resulted in a progressive increase in telomerase activity starting from the 4th week of exposure. The increased telomerase activity either persisted or further increased with the increased exposure. In papillomas and carcinomas the enzyme activity was comparable and was 45-fold higher than in the epidermis of control mice. Western blot analysis showed an upregulation in the protein expression of cyclin D1 and cyclin E and their regulatory subunits cdk4 and cdk2 during the course of UVB exposure and in papillomas and carcinomas. The protein expression of cdk6 and ckis viz. p16/Ink4A, p21/Waf1 and p27/Kip1 did not show any significant change in UVB exposed skin, but significant upregulation was observed both in papillomas and carcinomas. The results suggest that telomerase activation may be involved in UVB-induced tumorigenesis in mouse skin and that increased telomerase activity may be associated with G1 phase of the cell cycle.  (+info)

(3/3684) Telomerase activity is sufficient to allow transformed cells to escape from crisis.

The introduction of simian virus 40 large T antigen (SVLT) into human primary cells enables them to proliferate beyond their normal replicative life span. In most cases, this temporary escape from senescence eventually ends in a second proliferative block known as "crisis," during which the cells cease growing or die. Rare immortalization events in which cells escape crisis are frequently correlated with the presence of telomerase activity. We tested the hypothesis that telomerase activation is the critical step in the immortalization process by studying the effects of telomerase activity in two mortal SVLT-Rasval12-transformed human pancreatic cell lines, TRM-6 and betalox5. The telomerase catalytic subunit, hTRT, was introduced into late-passage cells via retroviral gene transfer. Telomerase activity was successfully induced in infected cells, as demonstrated by a telomerase repeat amplification protocol assay. In each of nine independent infections, telomerase-positive cells formed rapidly dividing cell lines while control cells entered crisis. Telomere lengths initially increased, but telomeres were then maintained at their new lengths for at least 20 population doublings. These results demonstrate that telomerase activity is sufficient to enable transformed cells to escape crisis and that telomere elongation in these cells occurs in a tightly regulated manner.  (+info)

(4/3684) Analysis of genomic integrity and p53-dependent G1 checkpoint in telomerase-induced extended-life-span human fibroblasts.

Life span determination in normal human cells may be regulated by nucleoprotein structures called telomeres, the physical ends of eukaryotic chromosomes. Telomeres have been shown to be essential for chromosome stability and function and to shorten with each cell division in normal human cells in culture and with age in vivo. Reversal of telomere shortening by the forced expression of telomerase in normal cells has been shown to elongate telomeres and extend the replicative life span (H. Vaziri and S. Benchimol, Curr. Biol. 8:279-282, 1998; A. G. Bodnar et al., Science 279:349-352, 1998). Extension of the life span as a consequence of the functional inactivation of p53 is frequently associated with loss of genomic stability. Analysis of telomerase-induced extended-life-span fibroblast (TIELF) cells by G banding and spectral karyotyping indicated that forced extension of the life span by telomerase led to the transient formation of aberrant structures, which were subsequently resolved in higher passages. However, the p53-dependent G1 checkpoint was intact as assessed by functional activation of p53 protein in response to ionizing radiation and subsequent p53-mediated induction of p21(Waf1/Cip1/Sdi1). TIELF cells were not tumorigenic and had a normal DNA strand break rejoining activity and normal radiosensitivity in response to ionizing radiation.  (+info)

(5/3684) Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene.

Activation of telomerase is one of the rate-limiting steps in human cell immortalization and carcinogenesis Human telomerase is composed of at least two protein subunits and an RNA component. Regulation of expression of the catalytic subunit, human telomerase reverse transcriptase (hTERT), is suggested as the major determinant of the enzymatic activity. We report here the cloning and characterization of the 5'-regulatory region of the hTERT gene. The highly GC-rich content of the 5' end of the hTERT cDNA spans to the 5'-flanking region and intron 1, making a CpG island. A 1.7-kb DNA fragment encompassing the hTERT gene promoter was placed upstream of the luciferase reporter gene and transiently transfected into human cell lines of fibroblastic and epithelial origins that differed in their expression of the endogenous hTERT gene. Endogenous hTERT-expressing cells, but not nonexpressing cells, showed high levels of luciferase activity, suggesting that the regulation of hTERT gene expression occurs mainly at the transcriptional level. Additional luciferase assays using a series of constructs containing unidirectionally deleted fragments revealed that a 59-bp region (-208 to -150) is required for the maximal promoter activity. The region contains a potential Myc oncoprotein binding site (E-box), and cotransfection of a c-myc expression plasmid markedly enhanced the promoter activity, suggesting a role of the Myc protein in telomerase activation. Identification of the regulatory regions of the hTERT promoter sequence will be essential in understanding the molecular mechanisms of positive and negative regulation of telomerase.  (+info)

(6/3684) A telomere-independent senescence mechanism is the sole barrier to Syrian hamster cell immortalization.

Reactivation of telomerase and stabilization of telomeres occur simultaneously during human cell immortalization in vitro and the vast majority of human cancers possess high levels of telomerase activity. Telomerase repression in human somatic cells may therefore have evolved as a powerful resistance mechanism against immortalization, clonal evolution and malignant progression. The comparative ease with which rodent cells immortalize in vitro suggests that they have less stringent controls over replicative senescence than human cells. Here, we report that Syrian hamster dermal fibroblasts possess substantial levels of telomerase activity throughout their culture life-span, even after growth arrest in senescence. In our studies, telomerase was also detected in uncultured newborn hamster skin, in several adult tissues, and in cultured fibroblasts induced to enter the post-mitotic state irreversibly by serum withdrawal. Transfection of near-senescent dermal fibroblasts with a selectable plasmid vector expressing the SV40 T-antigen gene resulted in high-frequency single-step immortalization without the crisis typically observed during the immortalization of human cells. Collectively, these data provide an explanation for the increased susceptibility of rodent cells to immortalization (and malignant transformation) compared with their human equivalents, and provide evidence for a novel, growth factor-sensitive, mammalian senescence mechanism unrelated to telomere maintenance.  (+info)

(7/3684) Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice.

To study the effect of continued telomere shortening on chromosome stability, we have analyzed the telomere length of two individual chromosomes (chromosomes 2 and 11) in fibroblasts derived from wild-type mice and from mice lacking the mouse telomerase RNA (mTER) gene using quantitative fluorescence in situ hybridization. Telomere length at both chromosomes decreased with increasing generations of mTER-/- mice. At the 6th mouse generation, this telomere shortening resulted in significantly shorter chromosome 2 telomeres than the average telomere length of all chromosomes. Interestingly, the most frequent fusions found in mTER-/- cells were homologous fusions involving chromosome 2. Immortal cultures derived from the primary mTER-/- cells showed a dramatic accumulation of fusions and translocations, revealing that continued growth in the absence of telomerase is a potent inducer of chromosomal instability. Chromosomes 2 and 11 were frequently involved in these abnormalities suggesting that, in the absence of telomerase, chromosomal instability is determined in part by chromosome-specific telomere length. At various points during the growth of the immortal mTER-/- cells, telomere length was stabilized in a chromosome-specific man-ner. This telomere-maintenance in the absence of telomerase could provide the basis for the ability of mTER-/- cells to grow indefinitely and form tumors.  (+info)

(8/3684) Induction of telomerase activity in v-myc-transformed avian cells.

Telomerase activity is detectable in the majority of tumors or immortalized cell lines, but is repressed in most normal human somatic cells. It is generally assumed that reactivation of telomerase prevents the erosion of chromosome ends which occurs in cycling cells and, hence, hinders cellular replicative senescence. Here, we show that the expression of v-Myc oncoprotein by retroviral infection of telomerase-negative embryonal quail myoblasts and chicken neuroretina cells is sufficient for reactivating telomerase activity, earlier than telomere shortening could occur. Furthermore, the use of a conditional v-Myc-estrogen receptor protein (v-MycER) causes estrogen-dependent expression of detectable levels of telomerase activity in recently infected chick embryo fibroblasts and neuroretina cells. We conclude that the high levels of telomerase activity in v-Myc-expressing avian cells are not the mere consequence of transformation or of a differentiative block, since v-Src tyrosine kinase, which prevents terminal differentiation and promotes cell transformation, fails to induce telomerase activity.  (+info)