Assaying potential carcinogens with Drosophila. (1/1051)

Drosophila offers many advantages for the detection of mutagenic activity of carcinogenic agents. It provides the quickest assay system for detecting mutations in animals today. Its generation time is short, and Drosophila is cheap and easy to breed in large numbers. The simple genetic testing methods give unequivocal answers about the whole spectrum of relevant genetic damage. A comparison of the detection capacity of assays sampling different kinds of genetic damage revealed that various substances are highly effective in inducing mutations but do not produce chromosome breakage effects at all, or only at much higher concentrations than those required for mutation induction. Of the different assay systems available, the classical sex-linked recessive lethal test deserves priority, in view of its superior capacity to detect mutagens. Of practical importance is also its high sensitivity, because a large number of loci in one fifth of the genome is tested for newly induced forward mutations, including small deletions. The recent findings that Drosophila is capable of carrying out the same metabolic activation reactions as the mammalian liver makes the organism eminently suitable for verifying results obtained in prescreening with fast microbial assay systems. An additional advantage in this respect is the capacity of Drosophila for detecting short-lived activation products, because intracellular metabolic activation appears to occur within the spermatids and spermatocytes.  (+info)

Enzymes and reproduction in natural populations of Drosophila euronotus. (2/1051)

Populations of Drosophila euronotus, one from southern Louisiana )3 samples), and one from Missouri (2 samples), were classified for allele frequencies at alkaline phosphatase (APH) and acid phosphatase (ACPH) loci. The two populations differed consistently in allele frequencies at both loci. The APH locus is on the inversion-free X chromosome; the chromosomal locus of the autosomal ACPH is unknown, and could involve inversion polymorphism. Wild females from Missouri and Louisiana populations heterozygous at the APH locus carried more sperm at capture than did the corresponding homozygotes. This heterotic association was significant for the combined samples, and whether it was the result of heterosis at the enzyme locus studied, or due to geographically widespread close linkage with other heterotic loci, it should help to maintain heterozygosity at the APH locus. In a Louisiana collection which included large numbers of sperm-free females, simultaneous homozygosity at both enzyme loci was significantly associated with lack of sperm. It is suggested that the latter association is the result of young heterozygous females achieving sexual maturity earlier than do the double homozygotes. The average effective sperm load for 225 wild females was only 29.4, suggesting the necessity for frequent repeat-mating in nature to maintain female fertility. A comparison of the sex-linked APH genotypes of wild females with those of their daughters indicated that among 295 wild-inseminated females from five populations, 35% had mated more than once, and of this 35%, six females had mated at least three times. Because of ascertainment difficulties, it is clear that the true frequency of multiple-mating in nature must have been much higher than the observed 35%. Laboratory studies indicate that multiple-mating in this species does not involve sperm displacement, possibly due to the small number of sperms transmitted per mating, and the fact that the sperm receptacles are only partially filled by a given mating.  (+info)

An unusual family of benign "X" linked muscular dystrophy with cardiac involvement. (3/1051)

A family of benign X-linked muscular dystrophy is described. Two of the 3 affected members appear quite representative of Becker's dystrophy. A third shows no pseudohypertrophy, only gross atrophy, affecting proximal and distal muscles and also shows early onset contractures and electrocardiographic abnormalities and is in these ways much more representative of the variety described by Emery and Dreifuss (1966). Two of the cases have distinctly abnormal electrocardiograms with extensive and deep Q waves and abnormal R/S ratios and VI. Both these have shown progression of electrocardiographic abnormalities during a 2-year follow-up. The family is reported to document this very unusual occurrence.  (+info)

Linkage relations of locus for X-borne type of Charcot-Marie-Tooth muscular atrophy and that for Xg blood groups. (4/1051)

The locus for the X-borne type of Charcot-Marie-Tooth muscular atrophy is not close to the Xg locus and probably not within direct measurable distance of it.  (+info)

Mitotic recombination in the heterochromatin of the sex chromosomes of Drosophila melanogaster. (5/1051)

The frequency of spontaneous and X-ray-induced mitotic recombination involving the Y chromosome has been studied in individuals with a marked Y chromosome arm and different XY compound chromosomes. The genotypes used include X chromosomes with different amounts of X heterochromatin and either or both arms of the Y chromosome attached to either side of the centromere. Individuals with two Y chromosomes have also been studied. The results show that the bulk of mitotic recombination takes place between homologous regions.  (+info)

Dicentric X isochromosomes in man. (6/1051)

Four cases of Turner's syndrome are presented in which an apparent X isochromosome i(Xq) has been found to possess two regions of centromeric heterochromatin. It is suggested that these chromosomes were isodicentric structures capable of functioning as monocentric elements as a result of the inactivation of one centromere. The prevalence of mosaicism is believed to be a consequence of the dicentric nature of these chromosomes, and it is considered possible that a high proportion of X isochromosmes are structurally dicentric. Banding patterns showed that the exchange site involved in the formation of the dicentric chromosome was different in at least three of the cases.  (+info)

Triple X female and Turner's syndrome offspring. (7/1051)

A mentally retarded young female having 47 chromosomes with a triple X karotype produced a child with Turner's syndrome associated with mental defeciency. To our knowledge this is the first example of a triple X female giving birth to a child with Turner's syndrome.  (+info)

Volumetric magnetic resonance imaging study of the brain in subjects with sex chromosome aneuploidies. (8/1051)

OBJECTIVES: Cognitive impairment has been reported in people with sex chromosome aneuploides (SCAs) and it has been proposed that the presence of an extra sex chromosome may have an adverse effect on neurodevelopment. This study examines the hypothesis with structural MRI of the brain. METHODS: Thirty two subjects with SCA (XXX (n=12), XYY (n=10), and XXY (n=10)) from a birth cohort study were matched groupwise for age, parental social class, and height with normal controls (13 female, 26 male). Brain MRI, measurements of IQ, and a structured psychiatric interview were performed. RESULTS: The XXX females and XXY males had significantly smaller whole brain volumes than controls of the same phenotypic sex (p=0.003 and p+info)