(1/6102) Evidence on the conformation of HeLa-cell 5.8S ribosomal ribonucleic acid from the reaction of specific cytidine residues with sodium bisulphite.

The reaction of HeLa-cell 5.8S rRNA with NaHSO3 under conditions in which exposed cytidine residues are deaminated to uridine was studied. It was possible to estimate the reactivities of most of the 46 cytidine residues in the nucleotide sequence by comparing 'fingerprints' of the bisulphite-treated RNA with those of untreated RNA. The findings were consistent with the main features of the secondary-structure model for mammalian 5.85S rRNA proposed by Nazar, Sitz, & Busch [J. Biol. Chem (1975) 250, 8591--8597]. Five out of six regions that are depicted in the model as single-stranded loops contain cytidine residues that are reactive towards bisulphite at 25 degrees C (the other loop contains no cytidine). The cytidine residue nearest to the 3'-terminus is also reactive. Several cytidines residues that are internally located within proposed double-helical regions show little or no reactivity towards bisulphite, but the cytidine residues of several C.G pairs at the ends of helical regions show some reactivity, and one of the proposed loops appears to contain six nucleotides, rather than the minimum of four suggested by the primary structure. Two cytidine residues that are thought to be 'looped out' by small helix imperfections also show some reactivity.  (+info)

(2/6102) NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae.

A mutation in NMD3 was found to be lethal in the absence of XRN1, which encodes the major cytoplasmic exoribonuclease responsible for mRNA turnover. Molecular genetic analysis of NMD3 revealed that it is an essential gene required for stable 60S ribosomal subunits. Cells bearing a temperature-sensitive allele of NMD3 had decreased levels of 60S subunits at the nonpermissive temperature which resulted in the formation of half-mer polysomes. Pulse-chase analysis of rRNA biogenesis indicated that 25S rRNA was made and processed with kinetics similar to wild-type kinetics. However, the mature RNA was rapidly degraded, with a half-life of 4 min. Nmd3p fractionated as a cytoplasmic protein and sedimented in the position of free 60S subunits in sucrose gradients. These results suggest that Nmd3p is a cytoplasmic factor required for a late cytoplasmic assembly step of the 60S subunit but is not a ribosomal protein. Putative orthologs of Nmd3p exist in Drosophila, in nematodes, and in archaebacteria but not in eubacteria. The Nmd3 protein sequence does not contain readily recognizable motifs of known function. However, these proteins all have an amino-terminal domain containing four repeats of Cx2C, reminiscent of zinc-binding proteins, implicated in nucleic acid binding or protein oligomerization.  (+info)

(3/6102) A computational screen for methylation guide snoRNAs in yeast.

Small nucleolar RNAs (snoRNAs) are required for ribose 2'-O-methylation of eukaryotic ribosomal RNA. Many of the genes for this snoRNA family have remained unidentified in Saccharomyces cerevisiae, despite the availability of a complete genome sequence. Probabilistic modeling methods akin to those used in speech recognition and computational linguistics were used to computationally screen the yeast genome and identify 22 methylation guide snoRNAs, snR50 to snR71. Gene disruptions and other experimental characterization confirmed their methylation guide function. In total, 51 of the 55 ribose methylated sites in yeast ribosomal RNA were assigned to 41 different guide snoRNAs.  (+info)

(4/6102) Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes.

It was previously shown that fully grown ovarian germinal vesicle (GV) oocytes of adult mice exhibit several nuclear configurations that differ essentially by the presence or absence of a ring of condensed chromatin around the nucleolus. These configurations have been termed, respectively, SN (surrounded nucleolus) and NSN (nonsurrounded nucleolus). Work from our and other laboratories has revealed ultrastructural and functional differences between these two configurations. The aims of the present study were 1) to analyze the equilibrium between the SN and the NSN population as a function of the age of the mice and the time after hCG-induced ovulation and 2) to study the polymerase I (pol I)- and polymerase II (pol II)-dependent transcription in both types of oocytes through the detection of bromouridine incorporated into nascent RNA. We show 1) that ovarian GV oocytes exhibiting the SN-type configuration can be found as soon as 17 days after birth in the C57/CBA mouse strain and 2) that the SN:NSN ratio of ovarian GV oocytes is very low just after hCG-induced ovulation and then increases progressively with the time after ovulation. Furthermore, we demonstrate that the SN configuration correlates strictly with the arrest of both pol I- and pol II-dependent transcription in mice at any age. Finally, we show that ribosomal genes are located at the outer periphery of the nucleolus in the NSN configuration and that pol I-dependent perinucleolar transcription sites correspond to specific ultrastructural features of the nucleolus. Altogether, these results provide clear-cut criteria delineating transcriptionally active GV oocytes from those that are inactive, and confirm that the SN-type configuration is mostly present in preovulatory oocytes.  (+info)

(5/6102) An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes.

Elongation factor 1 alpha (EF-1 alpha) is a highly conserved ubiquitous protein involved in translation that has been suggested to have desirable properties for phylogenetic inference. To examine the utility of EF-1 alpha as a phylogenetic marker for eukaryotes, we studied three properties of EF-1 alpha trees: congruency with other phyogenetic markers, the impact of species sampling, and the degree of substitutional saturation occurring between taxa. Our analyses indicate that the EF-1 alpha tree is congruent with some other molecular phylogenies in identifying both the deepest branches and some recent relationships in the eukaryotic line of descent. However, the topology of the intermediate portion of the EF-1 alpha tree, occupied by most of the protist lineages, differs for different phylogenetic methods, and bootstrap values for branches are low. Most problematic in this region is the failure of all phylogenetic methods to resolve the monophyly of two higher-order protistan taxa, the Ciliophora and the Alveolata. JACKMONO analyses indicated that the impact of species sampling on bootstrap support for most internal nodes of the eukaryotic EF-1 alpha tree is extreme. Furthermore, a comparison of observed versus inferred numbers of substitutions indicates that multiple overlapping substitutions have occurred, especially on the branch separating the Eukaryota from the Archaebacteria, suggesting that the rooting of the eukaryotic tree on the diplomonad lineage should be treated with caution. Overall, these results suggest that the phylogenies obtained from EF-1 alpha are congruent with other molecular phylogenies in recovering the monophyly of groups such as the Metazoa, Fungi, Magnoliophyta, and Euglenozoa. However, the interrelationships between these and other protist lineages are not well resolved. This lack of resolution may result from the combined effects of poor taxonomic sampling, relatively few informative positions, large numbers of overlapping substitutions that obscure phylogenetic signal, and lineage-specific rate increases in the EF-1 alpha data set. It is also consistent with the nearly simultaneous diversification of major eukaryotic lineages implied by the "big-bang" hypothesis of eukaryote evolution.  (+info)

(6/6102) RecA-Mediated gene conversion and aminoglycoside resistance in strains heterozygous for rRNA.

Clinical resistance to aminoglycosides in general is due to enzymatic drug modification. Mutational alterations of the small ribosomal subunit rRNA have recently been found to mediate acquired resistance in bacterial pathogens in vivo. In this study we investigated the effect of 16S rRNA heterozygosity (wild-type [wt] and mutant [mut] operons at position 1408 [1408wt/1408mut]) on aminoglycoside resistance. Using an integrative vector, we introduced a single copy of a mutated rRNA operon (1408 A-->G) into Mycobacterium smegmatis, which carries two chromosomal wild-type rRNA operons; the resultant transformants exhibited an aminoglycoside-sensitive phenotype. In contrast, introduction of the mutated rRNA operon into an M. smegmatis rrnB knockout strain carrying a single functional chromosomal wild-type rRNA operon resulted in aminoglycoside-resistant transformants. Subsequent analysis by DNA sequencing and RNase protection assays unexpectedly demonstrated a homozygous mutant genotype, rRNAmut/rRNAmut, in the resistant transformants. To investigate whether RecA-mediated gene conversion was responsible for the aminoglycoside-resistant phenotype in the rRNAwt/rRNAmut strains, recA mutant strains were generated by allelic exchange techniques. Transformation of the recA rrnB M. smegmatis mutant strains with an integrative vector expressing a mutated rRNA operon (Escherichia coli position 1408 A-->G) resulted in transformants with an aminoglycoside-sensitive phenotype. Subsequent analysis showed stable heterozygosity at 16S rRNA position 1408 with a single wild-type allele and a single resistant allele. These results demonstrate that rRNA-mediated mutational resistance to aminoglycosides is recessive.  (+info)

(7/6102) In situ identification of cyanobacteria with horseradish peroxidase-labeled, rRNA-targeted oligonucleotide probes.

Individual cyanobacterial cells are normally identified in environmental samples only on the basis of their pigmentation and morphology. However, these criteria are often insufficient for the differentiation of species. Here, a whole-cell hybridization technique is presented that uses horseradish peroxidase (HRP)-labeled, rRNA-targeted oligonucleotides for in situ identification of cyanobacteria. This indirect method, in which the probe-conferred enzyme has to be visualized in an additional step, was necessary since fluorescently monolabeled oligonucleotides were insufficient to overstain the autofluorescence of the target cells. Initially, a nonfluorescent detection assay was developed and successfully applied to cyanobacterial mats. Later, it was demonstrated that tyramide signal amplification (TSA) resulted in fluorescent signals far above the level of autofluorescence. Furthermore, TSA-based detection of HRP was more sensitive than that based on nonfluorescent substrates. Critical points of the assay, such as cell fixation and permeabilization, specificity, and sensitivity, were systematically investigated by using four oligonucleotides newly designed to target groups of cyanobacteria.  (+info)

(8/6102) Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology.

A new microscopic method for simultaneously determining in situ the identities, activities, and specific substrate uptake profiles of individual bacterial cells within complex microbial communities was developed by combining fluorescent in situ hybridization (FISH) performed with rRNA-targeted oligonucleotide probes and microautoradiography. This method was evaluated by using defined artificial mixtures of Escherichia coli and Herpetosiphon aurantiacus under aerobic incubation conditions with added [3H]glucose. Subsequently, we were able to demonstrate the potential of this method by visualizing the uptake of organic and inorganic radiolabeled substrates ([14C]acetate, [14C]butyrate, [14C]bicarbonate, and 33Pi) in probe-defined populations from complex activated sludge microbial communities by using aerobic incubation conditions and anaerobic incubation conditions (with and without nitrate). For both defined cell mixtures and activated sludge, the method proved to be useful for simultaneous identification and analysis of the uptake of labeled substrates under the different experimental conditions used. Optimal results were obtained when fluorescently labeled oligonucleotides were applied prior to the microautoradiographic developing procedure. For single-cell resolution of FISH and microautoradiographic signals within activated sludge flocs, cryosectioned sample material was examined with a confocal laser scanning microscope. The combination of in situ rRNA hybridization techniques, cryosectioning, microautoradiography, and confocal laser scanning microscopy provides a unique opportunity for obtaining cultivation-independent insights into the structure and function of bacterial communities.  (+info)