Expression of thrombospondin-1 in ischemia-induced retinal neovascularization. (1/2152)

Thrombospondin-1 is an extracellular matrix protein that inhibits endothelial cell proliferation, migration, and angiogenesis. This study was performed to investigate the role of thrombospondin-1 in ischemic retinal neovascularization. In a murine model of retinal neovascularization, thrombospondin-1 mRNA was increased from postnatal day 13 (P13), with a threefold peak response observed on P15, corresponding to the time of development of retinal neovascularization. Prominent expression of thrombospondin-1 was observed in neovascular cells, specifically, cells adjacent to the area of nonperfusion. It has been suggested that vascular endothelial growth factor (VEGF) plays a major role in ischemia-induced retinal neovascularization of this model, so we studied the effects of VEGF on thrombospondin-1 expression. In bovine retinal microcapillary endothelial cells, VEGF induced a biphasic response of thrombospondin-1 expression; VEGF decreased thrombospondin-1 mRNA 0.41-fold after 4 hours, whereas it increased, with a threefold peak response, after 24 hours. VEGF-induced endothelial cell proliferation was completely inhibited by exogenous thrombospondin-1 and increased by 37.5% with anti-thrombospondin-1 antibody. The present findings suggest that, in the ischemic retina, retinal neovascular cells increase thrombospondin-1 expression, and VEGF may stimulate endogenous thrombospondin-1 induction, which inhibits endothelial cell growth. VEGF-mediated thrombospondin-1 induction in ischemia-induced angiogenesis may be a negative feedback mechanism.  (+info)

Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells. (2/2152)

PURPOSE: Dogs fed a diet containing 30% galactose experience retinal vascular changes similar to those in human diabetic retinopathy, with selective pericyte loss as an initial lesion. In the present study the relationship among reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductases, polyol formation, and flux through the polyol pathway in cultured dog retinal capillary cells were investigated. METHODS: Pericytes and endothelial cells were cultured from retina of beagle dogs. NADPH-dependent reductases were characterized by chromatofocusing after gel filtration. Sugars in cultured cells were analyzed by gas chromatography, and flux through the polyol pathway was investigated by 19F nuclear magnetic resonance (NMR) with 3-fluoro-3-deoxy-D-glucose (3FG) as a substrate. The presence of aldose reductase and sorbitol dehydrogenase in these cells was examined by northern blot analysis. RESULTS: Two distinct peaks corresponding to aldose reductase and aldehyde reductase, the latter being dominant, were observed in pericytes by chromatofocusing. Culture in medium containing either 10 mM D-galactose or 30 mM D-glucose resulted in the accumulation of sugar alcohol in pericytes that was markedly reduced by aldose reductase inhibitors. 19F NMR spectra obtained from pericytes cultured for 5 days in medium containing 2 mM 3FG displayed the marked accumulation of 3-fluoro-deoxysorbitol but not 3-fluoro-deoxyfructose. No 3FG metabolism was observed in similarly cultured endothelial cells. With northern blot analysis, aldose reductase was detected in pericytes but not in endothelial cells. Sorbitol dehydrogenase was below the detectable limit in pericytes and endothelial cells. CONCLUSIONS: Aldose, aldehyde, and glyceraldehyde reductases are present in dog retinal capillary pericytes, with aldehyde reductase being the major reductase present. Polyol accumulation easily occurs in pericytes but not in endothelial cells.  (+info)

Necrosis and apoptosis after retinal ischemia: involvement of NMDA-mediated excitotoxicity and p53. (3/2152)

PURPOSE: Accumulated evidence has shown that apoptosis and necrosis contribute to neuronal death after ischemia. The present study was performed to study the temporal and spatial patterns of neuronal necrosis and apoptosis after ischemia in retina and to outline mechanisms underlying necrosis and apoptosis. METHODS: Retinal ischemia was induced by increasing intraocular pressure to a range of 160 mm Hg to 180 mm Hg for 90 minutes in adult rats. The patterns of neuronal cell death were determined using light and electron microscopy and were visualized by TdT-dUTP nick-end labeling (TUNEL). The mRNA expression profile of p53 was examined using reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization histochemistry. Immunohistochemistry was performed using anti-p53, anti-microtubule associated protein-2, and anti-glial fibrillary acidic protein antibodies. RESULTS: Within 4 hours after ischemia, neurons in the inner nuclear cell layer (INL) and ganglion cell layer (GCL) underwent marked necrosis, made apparent by swelling of the cell body and mitochondria, early fenestration of the plasma membrane, and irregularly scattered condensation of nuclear chromatin. After 3 days, the INL and GCL neurons showed further degeneration through apoptosis marked by cell body shrinkage, aggregation, and condensation of nuclear chromatin. Apoptotic neurons were also observed sparsely in the outer nuclear cell layer. Intravitreal injections of MK-801 prevented early neuronal degeneration after ischemia. Of note, mRNA and protein levels of p53, the tumor suppressor gene known to induce apoptosis, were increased in the retinal areas undergoing apoptosis 1 to 3 days after ischemic injury. CONCLUSIONS: Ischemia produces the N-methyl-D-aspartate-mediated necrosis and slowly evolving apoptosis of neurons in the retina. The latter may depend on the expression of the p53 proapoptosis gene.  (+info)

Angiotensin II-induced constrictions are masked by bovine retinal vessels. (4/2152)

PURPOSE: To unmask the vasoconstricting effect of angiotensin II (Ang II) on retinal smooth muscle by studying its interaction with endothelium-derived paracrine substances. This study focused specifically on determining the changes in vascular diameter and the release of endothelial-derived vasodilators, nitric oxide (NO) and prostaglandin (PG) I2, from isolated retinal microvessels. METHODS: Bovine retinal central artery and vein were cannulated, and arterioles and venules were perfused with oxygenated/heparinized physiological salt solution at 37 degrees C. This ex vivo perfused retinal microcirculation model was used to observe the contractile effects of Ang II on arterioles and venules of different diameters. The NO and PGI2 synthase inhibitors, 1-NOARG and flurbiprofen, respectively, were used to unmask Ang II vasoconstriction; the changes in vascular diameters were then measured. Enzyme immunoassays were used to measure the release of cGMP (an index of NO release) and 6-keto-PG-F1alpha (a stable metabolite of PGI2) from isolated bovine retinal vessels. RESULTS: Topically applied Ang II (10(-10) M to 10(-4) M) caused significant (P < 0.05) arteriolar and venular constrictions in a dose-dependent manner, with the smallest retinal arterioles (7+/-0.2 microm luminal diameter) and venules (12+/-2 microm luminal diameter) significantly more sensitive than larger vessels. After the inhibition of endogenous NO and PGI2 synthesis by 1-NOARG and flurbiprofen, respectively, the vasoconstriction effects of Ang II became more pronounced. Again, the smallest vessels tested were significantly more sensitive, and synthesis of endothelial-derived relaxing factor (EDRF), therefore, may be most important in these vessels. Vasoactive doses of Ang II (10(-10) M to 10(-4) M) caused a dose-dependent increase in the release of NO and PGI2 from isolated bovine retinal vessels, indicating that the increase in EDRF may nullify direct Ang II-induced vasoconstriction. Interestingly, intraluminal administration of Ang II caused only vasodilation. CONCLUSIONS: This study demonstrates that the retinal vascular endothelium acts as a buffer against the vasoconstricting agent Ang II via release of vasodilators NO and PGI2, and the vasoconstriction effects due to Ang II are most prominent in the smallest diameter vessels.  (+info)

Riluzole improves functional recovery after ischemia in the rat retina. (5/2152)

PURPOSE: Retinal ischemia leads to neuronal death. The effects of riluzole, a drug that protects against the deleterious effect of cerebral ischemia by acting on several types of ion channels and blocking glutamatergic neurotransmission, were investigated in a rat model of retinal ischemic injury. METHODS: Retinal ischemia was induced by increasing intraocular pressure above systolic blood pressure for 30 minutes. Electroretinograms were recorded before ischemia and at different periods of reperfusion. Riluzole was injected or topically applied to the eye before or after ischemia and twice daily during the reperfusion period. Retinas were harvested for histopathology (toluidine blue and silver-impregnation stainings, Tdt-dUTP terminal nick-end labeling [TUNEL] method) and immunohistochemistry for cytoskeletal glial fibrillary acid protein and c-jun NH2-terminal kinase (p-JNK). RESULTS: Ischemia for 30 minutes caused a reduction of a- and b-waves of the electroretinogram. Systemic and topical treatments with riluzole significantly enhanced the recovery of the reduced a- and b-waves after defined reperfusion times. Riluzole also prevented or attenuated ischemia-induced retinal cell death (necrosis and apoptosis) and reduced the activation of p-JNK, c-jun phosphorylation, and the increase of cytoskeletal proteins induced by ischemic injury. CONCLUSIONS: Riluzole acted in vivo as a potent neuroprotective agent against pressure-induced ischemia. Therefore, riluzole may be a major drug for use in protection against retinal injury.  (+info)

Brightness alters Heidelberg retinal flowmeter measurements in an in vitro model. (6/2152)

PURPOSE: The Heidelberg Retinal Flowmeter (HRF), a laser Doppler flowmetry device, has captured interest as a research and clinical tool for measurement of ocular blood flow. Concerns remain about the range and accuracy of the values that it reports. METHODS: An in vitro blood-flow model was constructed to provide well-controlled laminar flow through a glass capillary for assessment by HRF. A change in material behind the glass capillary was used to simulate changing brightness conditions between eyes. RESULTS: Velocities reported by the HRF correlated linearly to true velocities below 8.8 mm/sec. Beyond 8.8 mm/sec, HRF readings fluctuated randomly. True velocity and HRF reported velocities were highly correlated, with r = 0.967 (P < 0.001) from 0.0 mm/sec to 2.7 mm/sec mean velocity using a light background, and r = 0.900 (P < 0.001) from 2.7 mm/sec to 8.8 mm/sec using a darker background. However, a large change in the y-intercept occurred in the calibration curve with the background change. CONCLUSIONS: The HRF may report velocities inaccurately because of varying brightness in the fundus. In the present experiment, a darker background produced an overreporting of velocities. An offset, possibly introduced by a noise correction routine, apparently contributed to the inaccuracies of the HRF measurements. Such offsets vary with local and global brightness. Therefore, HRF measurements may be error prone when comparing eyes. When used to track perfusion in a single eye over time, meaningful comparison may be possible if meticulous care is taken to align vessels and intensity controls to achieve a similar level of noise correction between measurements.  (+info)

Metabolic acidosis-induced retinopathy in the neonatal rat. (7/2152)

PURPOSE: Carbon dioxide (CO2)-induced retinopathy (CDIR) in the neonatal rat, analogous to human retinopathy of prematurity (ROP), was previously described by our group. In this model, it is possible that CO2-associated acidosis provides a biochemical mechanism for CDIR. Therefore, the effect of pure metabolic acidosis on the developing retinal vasculature of the neonatal rat was investigated. METHODS: A preliminary study of arterial blood pH was performed to confirm acidosis in our model. In neonatal rats with preplaced left carotid artery catheters, acute blood gas samples were taken 1 to 24 hours after gavage with either NH4Cl 1 millimole/100 g body weight or saline. In the subsequent formal retinopathy study, 150 newborn Sprague-Dawley rats were raised in litters of 25 and randomly assigned to be gavaged twice daily with either NH4Cl 1 millimole/100 g body weight (n = 75) or saline (n = 75) from day 2 to day 7. After 5 days of recovery, rats were killed, and retinal vasculature was assessed using fluorescein perfusion and ADPase staining techniques. RESULTS: In the preliminary pH study, the minimum pH after NH4Cl gavage was 7.10+/-0.10 at 3 hours (versus 7.37+/-0.03 in controls, mean +/- SD, P < 0.01). In the formal retinopathy study, preretinal neovascularization occurred in 36% of acidotic rats versus 5% of controls (P < 0.001). Acidotic rats showed growth retardation (final weight 16.5+/-3.0 g versus 20.2+/-2.6 g, P < 0.001). The ratio of vascularized to total retinal area was smaller in acidotic rats (94%+/-4% versus 96%+/-2%, P < 0.001). CONCLUSIONS: Metabolic acidosis alone induces neovascularization similar to ROP in the neonatal rat. This suggests a possible biochemical mechanism by which high levels of CO2 induce neovascularization and supports the suggestion that acidosis may be an independent risk factor for ROP.  (+info)

De novo lesions in presumed ocular histoplasmosis-like syndrome. (8/2152)

Two patients with multifocal choroiditis similar or identical to POHS are presented. Colour photographs and fluorescein angiography document the occurrence of de novo lesions in the originally involved eye. The cases also demonstrate the development of new choroidal lesions within the originally involved eye, the early evolution of the "basic choroidal lesion", and the need for fluorescein angiography for visualizing the underlying choroidal lesion.  (+info)