Loading...
(1/3508) A new element within the T-cell receptor alpha locus required for tissue-specific locus control region activity.

Locus control regions (LCRs) are cis-acting regulatory elements thought to provide a tissue-specific open chromatin domain for genes to which they are linked. The gene for T-cell receptor alpha chain (TCRalpha) is exclusively expressed in T cells, and the chromatin at its locus displays differentially open configurations in expressing and nonexpressing tissues. Mouse TCRalpha exists in a complex locus containing three differentially regulated genes. We previously described an LCR in this locus that confers T-lineage-specific expression upon linked transgenes. The 3' portion of this LCR contains an unrestricted chromatin opening activity while the 5' portion contains elements restricting this activity to T cells. This tissue-specificity region contains four known DNase I hypersensitive sites, two located near transcriptional silencers, one at the TCRalpha enhancer, and another located 3' of the enhancer in a 1-kb region of unknown function. Analysis of this region using transgenic mice reveals that the silencer regions contribute negligibly to LCR activity. While the enhancer is required for complete LCR function, its removal has surprisingly little effect on chromatin structure or expression outside the thymus. Rather, the region 3' of the enhancer appears responsible for the tissue-differential chromatin configurations observed at the TCRalpha locus. This region, herein termed the "HS1' element," also increases lymphoid transgene expression while suppressing ectopic transgene activity. Thus, this previously undescribed element is an integral part of the TCRalphaLCR, which influences tissue-specific chromatin structure and gene expression.  (+info)

(2/3508) Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL.

T cell receptor (TCR) recognition of nonpeptidic and modified peptide antigens has been recently uncovered but is still poorly understood. Immunization with an H-2Kb-restricted glycopeptide RGY8-6H-Gal2 generates a population of cytotoxic T cells that express both alpha/beta TCR, specific for glycopeptide, and gamma/delta TCR, specific for the disaccharide, even on glycolipids. The crystal structure of Kb/RGY8-6H-Gal2 now demonstrates that the peptide and H-2Kb structures are unaffected by the peptide glycosylation, but the central region of the putative TCR binding site is dominated by the extensive exposure of the tethered carbohydrate. These features of the Kb/RGY8-6H-Gal2 structure are consistent with the individual ligand binding preferences identified for the alpha/beta and gamma/delta TCRs and thus explain the generation of a carbohydrate-specific T cell response.  (+info)

(3/3508) The stability and fate of a spliced intron from vertebrate cells.

Introns constitute most of the length of typical pre-mRNAs in vertebrate cells. Thus, the turnover rate of introns may significantly influence the availability of ribonucleotides and splicing factors for further rounds of transcription and RNA splicing, respectively. Given the importance of intron turnover, it is surprising that there have been no reports on the half-life of introns from higher eukaryotic cells. Here, we determined the stability of IVS1Cbeta1, the first intron from the constant region of the mouse T-cell receptor-beta, (TCR-beta) gene. Using a tetracycline (tet)-regulated promoter, we demonstrate that spliced IVS1Cbeta1 and its pre-mRNA had half-lives of 6.0+/-1.4 min and 3.7+/-1.0 min, respectively. We also examined the half-lives of these transcripts by using actinomycin D (Act.D). Act.D significantly stabilized IVS1Cbeta1 and its pre-mRNA, suggesting that Act.D not only blocks transcription but exerts rapid and direct posttranscriptional effects in the nucleus. We observed that in vivo spliced IVS1Cbeta1 accumulated predominantly as lariat molecules that use a consensus branchpoint nucleotide. The accumulation of IVS1Cbeta1 as a lariat did not result from an intrinsic inability to be debranched, as it could be debranched in vitro, albeit somewhat less efficiently than an adenovirus intron. Subcellular-fractionation and sucrose-gradient analyses showed that most spliced IVS1Cbeta1 lariats cofractionated with pre-mRNA, but not always with mRNA in the nucleus. Some IVS1Cbeta1 also appeared to be selectively exported to the cytoplasm, whereas TCR-beta pre-mRNA remained in the nucleus. This study constitutes the first detailed analysis of the stability and fate of a spliced nuclear intron in vivo.  (+info)

(4/3508) Rapid death of adoptively transferred T cells in acquired immunodeficiency syndrome.

Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) probably play the major role in controlling HIV replication. However, the value of adoptive transfer of HIV-specific CTL expanded in vitro to HIV+ patients has been limited: this contrasts with the success of CTL therapy in treating or preventing Epstein-Barr virus and cytomegalovirus disease after bone marrow transplantation (BMT). We investigated the fate of expanded HIV-specific CTL clones in vivo following adoptive transfer to a patient with acquired immunodeficiency syndrome (AIDS). Two autologous CTL clones specific for HIV Gag and Pol were expanded to large numbers (>10(9)) in vitro and infused into an HIV-infected patient whose viral load was rising despite antiretroviral therapy. The fate of one clone was monitored by staining peripheral blood mononuclear cells (PBMCs) with T-cell receptor-specific tetrameric major histocompatibility complex (MHC)-peptide complexes. Although the CTL transfer was well tolerated, there were no significant changes in CD4 and CD8 lymphocyte counts and virus load. By tracking an infused clone using soluble MHC-peptide complexes, we show that cells bearing the Gag-specific T-cell receptors were rapidly eliminated within hours of infusion through apoptosis. Thus, the failure of adoptively transferred HIV-specific CTL to reduce virus load in AIDS may be due to rapid apoptosis of the infused cells, triggered by a number of potential mechanisms. Further trials of adoptive transfer of CTL should take into account the susceptibility of infused cells to in vivo apoptosis.  (+info)

(5/3508) Immune response to the immunodominant epitope of mouse hepatitis virus is polyclonal, but functionally monospecific in C57Bl/6 mice.

Mutations in an immunodominant CD8 CTL epitope (S-510-518) are selected in mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus. These mutations abrogate recognition by T cells harvested from the infected CNS in direct ex vivo cytotoxicity assays. Previous reports have suggested that, in general, an oligoclonal, monospecific T cell response contributes to the selection of CTL escape mutants. Herein, we show that, in MHV-JHM-infected mice, the CD8 T cell response after intraperitoneal infection is polyclonal and diverse. This diverse response was shown to include both polyclonal and oligoclonal components. The polyclonal data were shown to fit a logarithmic distribution. With regard to specificity, we used a panel of peptide analogues of epitope S-510-518 and spleen-derived CD8 T cell lines to determine why only a subset of possible mutations was selected in persistently infected mice. At a given position in the epitope, the mutations identified in in vivo isolates were among those that resulted in the greatest loss of recognition. However, not all such mutations were selected, suggesting that additional factors must contribute to selection in vivo. By extrapolation of these results to the persistently infected CNS, they suggest that the selection of CTL escape mutants requires the presence of a monospecific T cell response but also show that this response need not be oligoclonal.  (+info)

(6/3508) Characterization of CD4+ CD8alphaalpha+ and CD4-CD8alphaalpha+ intestinal intraepithelial lymphocytes in rats.

Intestinal intraepithelial lymphocytes (i-IEL) of aged rats comprise CD4+CD8alphaalpha+ and CD4-CD8alphaalpha+ T cells expressing TCR alphabeta. In the present study, we compared characteristics between CD4+CD8alphaalpha+ and CD4-CD8alphaalpha+ i-IEL, which were purified by a cell sorter from the i-IEL of 6-month-old Lewis rats. Most of the CD4+CD8alphaalpha+ i-IEL were of the CD44(hlgh) phenotype, while CD4-CD8alphabeta+ i-IEL were CD44(low). Vbeta usage in the CD4-CD8alphaalpha+ i-IEL was much diversified, while CD4+CD8alphaalpha+ i-IEL showed a skewed Vbeta repertoire. The CD4+CD8alphaalpha+ i-IEL but not the CD4-CD8alphaalpha+ i-IEL proliferated in response to syngeneic spleen cells, which was partially inhibited by addition of anti-MHC class I mAb. The CD4+CD8alphaalpha+ i-IEL produced IFN-gamma and IL-2 but no IL-4 or transforming growth factor (TGF)-beta in response to syngeneic spleen cells, while CD4-CD8alphaalpha+ i-IEL produced abundant levels of TGF-beta but no IL-2, IFN-gamma or IL-4. CD4+CD8alphaalpha+ i-IEL proliferated in response to exogenous IL-2 but not to IL-15, while CD4-CD8alphaalpha+ i-IEL could respond to IL-15 as well as IL-2. These results suggest that a significant fraction of CD4+CD8alphaalpha+ i-IEL belongs to Th1-type T cells capable of responding to self-MHC class I, while CD4-CD8alphaalpha+ i-IEL are a unique population with a diversified Vbeta repertoire that respond to IL-15 in rats.  (+info)

(7/3508) Development and function of autospecific dual TCR+ T lymphocytes.

Recent studies have challenged the long held concept that each T lymphocyte expresses on its surface only a single, unique alphabetaTCR. Dual TCR+ T cells have been recognized, however, their origin and potential to escape screening for self-reactivity remain obscure. We now report the thymic generation of dual alphabetaTCR+ T cells in the H-2Db/H-Y-specific TCR transgenic (Tg) mouse. Dual TCR+ thymocytes were positively selected less efficiently than single TCR+ thymocytes, although a subset attained maturity. Importantly, when TCR Tg mice were bred onto a negatively selecting background, auto-specific cells survived central deletion and matured as CD4+ dual TCR+ cells. These cells were autoreactive when CD8 expression was restored. The existence of autospecific, dual TCR+ T cells may have implications for the maintenance of self tolerance.  (+info)

(8/3508) Crossreactive recognition of viral, self, and bacterial peptide ligands by human class I-restricted cytotoxic T lymphocyte clonotypes: implications for molecular mimicry in autoimmune disease.

The immunodominant, CD8(+) cytotoxic T lymphocyte (CTL) response to the HLA-B8-restricted peptide, RAKFKQLL, located in the Epstein-Barr virus immediate-early antigen, BZLF1, is characterized by a diverse T cell receptor (TCR) repertoire. Here, we show that this diversity can be partitioned on the basis of crossreactive cytotoxicity patterns involving the recognition of a self peptide-RSKFRQIV-located in a serine/threonine kinase and a bacterial peptide-RRKYKQII-located in Staphylococcus aureus replication initiation protein. Thus CTL clones that recognized the viral, self, and bacterial peptides expressed a highly restricted alphabeta TCR phenotype. The CTL clones that recognized viral and self peptides were more oligoclonal, whereas clones that strictly recognized the viral peptide displayed a diverse TCR profile. Interestingly, the self and bacterial peptides equally were substantially less effective than the cognate viral peptide in sensitizing target cell lysis, and also resulted only in a weak reactivation of memory CTLs in limiting dilution assays, whereas the cognate peptide was highly immunogenic. The described crossreactions show that human antiviral, CD8(+) CTL responses can be shaped by peptide ligands derived from autoantigens and environmental bacterial antigens, thereby providing a firm structural basis for molecular mimicry involving class I-restricted CTLs in the pathogenesis of autoimmune disease.  (+info)