Polymerization of Acanthamoeba actin. Kinetics, thermodynamics, and co-polymerization with muscle actin. (1/3585)

The kinetics and thermodynamics for the polymerization of purified Acanthamoeba actin were studied and compared to muscle actin. Polymerization was qualitatively similar for the two actins with a rate-limiting nucleation step followed by rapid polymer extension. Polymerization occurred only above a threshold critical concentration which varied with polymerization conditions for each actin. In the presence of 2 mM MgCl2, nucleation of both actins was rapid and their critical concentrations were similarly low and not detectably dependent on temperature. In 0.1 M KCl, the rates of nucleation of both actins were much slower than when Mg2+ was present and were significantly different from each other. Also, under these conditions, the critical concentrations of Acanthamoeba and muscle actin were significantly different and both varied markedly with temperature. These quantitative differences between the two actins could be attributed to differences in both their enthalpies and entropies of polymerization, Acanthamoeba actin having the more positive deltaH and delta S. Co-polymerization of the two actins was also demonstrated. Overall, however, there were no qualitative differences between Acanthamoeba and muscle actin that would suggest a unique role for the monomer-polymer equilibrium of cytoplasmic actin in cell motility.  (+info)

Biochemical and electrophysiological studies on the mechanism of action of PNU-151774E, a novel antiepileptic compound. (2/3585)

PNU-151774E [(S)-(+)-2-(4-(3-fluorobenzyloxy)benzylamino)propanamide methanesulfonate], a new anticonvulsant that displays a wide therapeutic window, has a potency comparable or superior to that of most classic anticonvulsants. PNU-151774E is chemically unrelated to current antiepileptics. In animal seizure models it possesses a broad spectrum of action. In the present study, the action mechanism of PNU-151774E has been investigated using electrophysiological and biochemical assays. Binding studies performed with rat brain membranes show that PNU-151774E has high affinity for binding site 2 of the sodium channel receptor, which is greater than that of phenytoin or lamotrigine (IC50, 8 microM versus 47 and 185 microM, respectively). PNU-151774E reduces sustained repetitive firing in a use-dependent manner without modifying the first action potential in hippocampal cultured neurons. In the same preparation PNU-151774E inhibits tetrodotoxin-sensitive fast sodium currents and high voltage-activated calcium currents under voltage-clamp conditions. These electrophysiological activities of PNU-151774E correlate with its ability to inhibit veratrine and KCl-induced glutamate release in rat hippocampal slices (IC50, 56.4 and 185.5 microM, respectively) and calcium inward currents in mouse cortical neurons. On the other hand, PNU-151774E does not affect whole-cell gamma-aminobutryic acid- and glutamate-induced currents in cultured mouse cortical neurons. These results suggest that PNU-151774E exerts its anticonvulsant activity, at least in part, through inhibition of sodium and calcium channels, stabilizing neuronal membrane excitability and inhibiting transmitter release. The possible relevance of these pharmacological properties to its antiepileptic potential is discussed.  (+info)

Electrical and mechanical responses to diltiazem in potassium depolarized myocardium of the guinea pig. (3/3585)

Effects of diltiazem on the electrical and mechanical activities of guinea pig papillary muscle were investigated in K-rich Tyrode's solution (Kc1 12.7 mM). The electrical properties of cell membrane in K-rich solution were also examined in the ventricular muscle fibers. It was found that the overshoot as well as the maximum rate of rise (Vmax) of the action potential were highly sensitive to the extracellular concentration of CaC12 in K-rich solution. Vmax was also affected by NaC1. Diltiazem at a lower concentration (1.1 X 10(-7) M) caused a reduction in the contractile force of K-depolarized papillary muscle without producing significant changes in the resting and action potentials. In the presence of a higher concentration of diltiazem (1.1 X 10(-5) M), the contractile force decreased concurrently with the change in the action potential. Addition of CaC12 restored the original strength of contraction in parallel to the recovery of the action potential, especially in its overshoot and Vmax. From these results, it is inferred that diltiazem may decrease the contractile force of guinea pig papillary muscle either by interfering with the intrasmembrane calcium influx or by intracellularly reducing the free calcium ion concentration in the myoplasm.  (+info)

Sodium ion uptake into isolated plasma membrane vesicles: indirect effects of other ions. (4/3585)

Vesicles derived from plasma membrane of corneal endothelium were agitated to their minimum size distribution. When isotonic salt solutions surrounding the vesicles were changed there were alterations to the vesicle size distribution: the modal point of the logarithmic distribution did not change but the log variance did, indicating that substantial fission and fusion of vesicles occurred depending upon the nature of the surrounding solute. Orientation and total membrane area was conserved in the transformed population of vesicles. Although the ions added to the external isotonic salt solutions in the present series of experiments have no direct effect upon sodium membrane transporters in these membranes, kinetics of sodium accumulation into the vesicles were affected in a way that correlated with changes to the vesicle size distribution. Early-saturating (<1 min) intravesicular concentrations of sodium corresponded with apparently stable populations. Late-saturating (>1 min) intravesicular concentrations of sodium corresponded with significant vesicle distribution shifts and included a few seconds of delay. During the linear accumulation phase, both populations showed similar magnitudes of sodium transport. The significance of these data is discussed.  (+info)

Identification of mechanosensitive ion channels in the cytoplasmic membrane of Corynebacterium glutamicum. (5/3585)

Patch-clamp experiments performed on membrane fragments of Corynebacterium glutamicum fused into giant liposomes revealed the presence of two different stretch-activated conductances, 600 to 700 pS and 1,200 to 1,400 pS in 0.1 M KCl, that exhibited the same characteristics in terms of kinetics, ion selectivity, and voltage dependence.  (+info)

Mechanosensitive channel functions to alleviate the cell lysis of marine bacterium, Vibrio alginolyticus, by osmotic downshock. (6/3585)

The mechanosensitive channel with large conductance of Escherichia coli is the first to be cloned among stretch-activated channels. Although its activity was characterized by a patch clamp method, a physiological role of the channel has not been proved. The marine bacterium, Vibrio alginolyticus, is sensitive to osmotic stress and cell lysis occurs under osmotic downshock. We introduced an mscL gene into Vibrio alginolyticus, and the mechanosensitive channel with large conductance functions was found to alleviate cell lysis by osmotic downshock. This is the first report to show a physiological role of the mechanosensitive channel with large conductance.  (+info)

Studies of the role of endothelium-dependent nitric oxide release in the sustained vasodilator effects of corticotrophin releasing factor and sauvagine. (7/3585)

1. The mechanisms of the sustained vasodilator actions of corticotrophin-releasing factor (CRF) and sauvagine (SVG) were studied using rings of endothelium de-nuded rat thoracic aorta (RTA) and the isolated perfused rat superior mesenteric arterial vasculature (SMA). 2. SVG was approximately 50 fold more potent than CRF on RTA (EC40: 0.9 +/- 0.2 and 44 +/- 9 nM respectively, P < 0.05), and approximately 10 fold more active in the perfused SMA (ED40: 0.05 +/- 0.02 and 0.6 +/- 0.1 nmol respectively, P < 0.05). Single bolus injections of CRF (100 pmol) or SVG (15 pmol) in the perfused SMA caused reductions in perfusion pressure of 23 +/- 1 and 24 +/- 2% that lasted more than 20 min. 3. Removal of the endothelium in the perfused SMA with deoxycholic acid attenuated the vasodilatation and revealed two phases to the response; a short lasting direct action, and a sustained phase which was fully inhibited. 4. Inhibition of nitric oxide synthase with L-NAME (100 microM) L-NMMA (100 microM) or 2-ethyl-2-thiopseudourea (ETPU, 100 microM) had similar effects on the vasodilator responses to CRF as removal of the endothelium, suggesting a pivotal role for nitric oxide. However the selective guanylate cyclase inhibitor 1H-[l,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ, 10 microM) did not affect the response to CRF. 5. High potassium (60 mM) completely inhibited the vasodilator response to CRF in the perfused SMA, indicating a role for K channels in this response. 6. Compared to other vasodilator agents acting via the release of NO, the actions of CRF and SVG are strikingly long-lasting, suggesting a novel mechanism of prolonged activation of nitric oxide synthase.  (+info)

Protrusive growth from giant liposomes driven by actin polymerization. (8/3585)

Development of protrusions in the cell is indispensable in the process of cell motility. Membrane protrusion has long been suggested to occur as a result of actin polymerization immediately beneath the cell membrane at the leading edge, but elucidation of the mechanism is insufficient because of the complexity of the cell. To study the mechanism, we prepared giant liposomes containing monomeric actin (100 or 200 microM) and introduced KCl into individual liposomes by an electroporation technique. On the electroporation, the giant liposomes deformed. Most importantly, protrusive structure grew from the liposomes containing 200 microM actin at rates (ranging from 0.3 to 0.7 micrometer/s) similar to those obtained in the cell. The deformation occurred in a time range (30 approximately 100 s) similar to that of actin polymerization monitored in a cuvette (ca. 50 s). Concomitant with deformation, Brownian motion of micron-sized particles entrapped in the liposomes almost ceased. From these observations, we conclude that actin polymerization in the liposomes caused the protrusive formation.  (+info)