Testing the classification of static gamma axons using different patterns of random stimulation. (1/114)

The possibility of using randomly generated stimulus intervals (with a Poisson distribution) to identify the type(s) of intrafusal fiber activated by the stimulation of single static gamma axons was tested in Peroneus tertius muscle spindles of anesthetized cats. Three patterns of random stimulation with different values of mean intervals [20 +/- 4. 47, 30 +/- 8.94, and 40 +/- 8.94 (SD) ms] were used. Single static gamma axons activating, in single spindles, either the bag2 fiber alone or the chain fibers alone or both types of intrafusal fiber were prepared. Responses of spindle primary endings elicited by the stimulation of gamma axons were recorded from Ia fibers in cut dorsal root filaments. Cross-correlograms between stimuli and spikes of the primary ending responses, autocorrelograms, interval histograms of responses, and stimulations were built. The characteristics of cross-correlograms were found to be related not only to the type of intrafusal muscle fibers activated but also to the parameters of the stimulation. Moreover some cross-correlograms with similar characteristics were produced by the activation of different intrafusal muscle fibers. It also was observed that, whatever the type of intrafusal muscle fiber activated, cross-correlograms could exhibit oscillations after an initial peak, provided the extent in frequency of the primary ending response was small; these oscillations arise in part from the autocorrelation of the primary ending responses. Therefore, cross-correlograms obtained during random stimulation of static gamma axons cannot be used for unequivocally identifying the type(s) of intrafusal muscle fiber these axons supply.  (+info)

Patterns of fusimotor activity during locomotion in the decerebrate cat deduced from recordings from hindlimb muscle spindles. (2/114)

1. Recordings have been made from multiple single muscle spindle afferents from medial gastrocnemius (MG) and tibialis anterior (TA) muscles of one hindlimb in decerebrate cats, together with ankle rotation and EMG signals, during treadmill locomotion. Whilst the other three limbs walked freely, the experimental limb was denervated except for the nerves to MG and TA and secured so that it could rotate only at the ankle joint, without any external load. Each afferent was characterised by succinylcholine testing with regard to its intrafusal fibre contacts. Active movements were recorded and then replayed through a servo mechanism to reproduce the muscle length changes passively after using a barbiturate to suppress gamma-motor firing. 2. The difference in secondary afferent firing obtained by subtracting the discharge during passive movements from that during active movements was taken to represent the profile of static fusimotor activity. This indicated an increase before the onset of movement followed by a strongly modulated discharge in parallel with muscle shortening during locomotion. The pattern of static firing matched the pattern of unloaded muscle shortening very closely in the case of TA and with some phase advance in the case of MG. The same effects were observed in primary afferents. 3. Primary afferents with bag1 (b1) contacts in addition showed higher firing frequencies during muscle lengthening in active than in passive movements. This indicated increased dynamic fusimotor firing during active locomotion. There was no evidence as to whether this fluctuated during the movement cycles. 4. When the mean active minus passive difference profile of firing in bag2-chain (b2c) type primary afferents was subtracted from that for b1b2c afferents, the difference was dominated by a peak centred on the moment of maximum lengthening velocity (v). 5. The component of the active minus passive difference firing due to b1 fibre contacts could be modelled by f(t) = av (where a is a constant) during lengthening and by f(t) = 0.2 av during shortening. The remainder of the difference signal matched the predictions of the static fusimotor signal derived from secondary afferents. 6. The findings are discussed in relation to the concept that the modulated static fusimotor pattern may represent a 'temporal template' of the expected movement, though the relationship of the results to locomotion in the intact animal will require further investigation. The analysis of the data indicates that the combined action of muscle length changes and static and dynamic fusimotor activity to determine primary afferent firing can be understood in terms of the interaction between the b1 and b2c impulse initiation sites.  (+info)

Coupling between serotoninergic and noradrenergic neurones and gamma-motoneurones in the cat. (3/114)

Noradrenaline is known to suppress transmission from group II muscle afferents when locally applied to gamma-motoneurones, and serotonin (5-HT) facilitates the transmission. The purpose of this investigation was to search for evidence of monoaminergic innervation of gamma-motoneurones. Eight gamma-motoneurones were labelled with rhodamine-dextran, and 50 micrometer thick sagittal sections of the spinal cord containing them were exposed to antibodies against dopamine beta-hydroxylase (DBH) and 5-HT. All the cells were directly and/or indirectly excited by muscle group II afferents from the muscle they innervated and/or other muscles. Appositions between monoaminergic fibres and the labelled somata and dendrites were located with three-colour confocal laser scanning microscopy by examining series of optical sections at 1 or 0.5 micrometer intervals. DBH and 5-HT varicosities formed appositions with the somata and dendrites of all the gamma-motoneurones. The mean packing densities for 5-HT (1.12 +/- 0.11 appositions per 100 micrometer(2) for somata and 0.91 +/- 0.07 per 100 micrometer(2) for dendrites) were similar to the densities of contacts reported for alpha-motoneurones. Monoaminergic varicosities in apposition to dendrites greatly outnumbered those on the somata. The density of DBH appositions was consistently lower - corresponding means were 53% and 62% of those for 5-HT on the somata and dendrites, respectively. It is concluded from an analysis of the distribution and density of varicosities in apposition to the gamma-motoneurones compared with the density in the immediate surround of the dendrites that there is indeed both a serotoninergic and noradrenergic innervation of gamma-motoneurones.  (+info)

Distinctive patterns of static and dynamic gamma motor activity during locomotion in the decerebrate cat. (4/114)

Simultaneous recordings were made from gamma (gamma) motor axons and from muscle spindle afferents of the medial gastrocnemius (MG) muscle during locomotion in decerebrate cats. The gamma-neurons were identified as static or dynamic (gammas or gammad) by correlating their behaviour during midbrain stimulation with changes in muscle spindle afferent responses to muscle stretch. On the basis of their behaviour during locomotion, gammas neurons could be divided into two groups. One group (type-1) showed strongly and smoothly modulated discharge increasing in parallel with the active muscle shortening in ankle extension, but with phase advance. The other group (type-2) also showed a modulated pattern, but with increased firing centred on the flexion phase. The proportions of the two were 13 type-1 and 7 type-2. The type-1 firing pattern accurately predicted the difference in firing frequency for secondary afferents obtained by subtracting from the recordings made during active movements the response of the same units to the movements repeated passively in the absence of fusimotor activity. The type-2 pattern also became consistent with the difference signal, when operated on by a phase lag appropriate to the effects of bag2 intrafusal fibres. These results suggest that there may be some degree of separate control of chain and bag2 intrafusal fibres. The discharge of gammad axons was also found to fluctuate with the locomotor cycle, with a pattern very distinct from that of the gammas records. The gammad firing frequency rose very suddenly from zero to a maximum at the onset of muscle shortening and continued into the beginning of lengthening. The term 'interrupted' discharge is suggested as a useful description. The timing of this discharge was shown to be appropriate for sensitising the primary afferents to detect the onset of stretch.  (+info)

Modulation of primary afferent discharge by dynamic and static gamma motor axons in cat muscle spindles in relation to the intrafusal fibre types activated. (5/114)

1. Recordings were made from muscle spindle primary afferents from medial gastrocnemius and soleus muscles of the cat to study the modulating effects of varying gamma-motor stimulation frequency at constant muscle length. Stimulus trains had a mean frequency of 50 Hz and were sinusoidally frequency modulated at 1 Hz, with an amplitude of modulation of +/- 5 to +/- 30 Hz. 2. When dynamic gamma-axons (gamma(d)) were selected for their pure effect on bag(1) fibres, they were found to have very little modulating effect on afferent firing. 3. Static gamma-axons (gamma(s)) were tested with a random stimulus and correlation method to determine whether they acted purely on bag(2) fibres, purely on chain fibres or on both together. Pure bag(2) gamma(s)-axons had weak modulating effects with large values of phase lag. Pure chain connections were effective in modulating with very little phase lag, but their mean gain was low. Mixed bag(2) and chain axons were most effective and showed phase shifts proportional to gain. 4. The effects of muscle length changes recorded previously from locomotor movements were also tested, with and without accompanying stimulation of mixed gamma(s)-axons with pulse trains recorded from gamma(s)-axons. This gamma(s) stimulation had a powerful effect in increasing afferent discharge during muscle shortening. The difference in afferent firing between the stimulated and non-stimulated conditions accurately predicted the profile of the gamma(s) stimulation. 5. The results are discussed in relation to the ways in which the gamma-motor system may be used in natural movements.  (+info)

Tonic and phasic discharge patterns in toe flexor gamma-motoneurons during locomotion in the decerebrate cat. (6/114)

To investigate the specificity of fusimotor (gamma) drive during locomotion, gamma-efferents were recorded from the flexor digitorum longus (FDL) and flexor hallucis longus (FHL) nerves in a decerebrate cat preparation. These nerves innervate hindlimb muscles that differ in some aspects of their mechanical action. For both FHL and FDL two stereotyped patterns of gamma activity were distinguished. Tonic units fired throughout the step cycle and had less modulation, but higher minimum rates, than phasic units, which were mainly recruited with ankle extensor [soleus (SOL)] electromyogram (EMG) activity. Differences in the relative timing of these patterns were apparent. In FHL the activity of phasic and most tonic neurons peaked after EMG onset. With FDL, tonic units generally reached maximum rate before, while phasic units peaked after, the beginning of EMG activity. During locomotion FHL and FDL alpha activity were rhythmically recruited with SOL. However, consistent with previous reports, FHL and FDL differed in their patterns of alpha activity. FHL was stereotyped while FDL was variable. Both FHL and FDL had activity related to ankle extensor EMG, but only FDL exhibited a peak around the end of this phase. No corresponding gamma activity was observed in FDL. In conclusion, 1) FHL and FDL received tonic and phasic fusimotor drive; 2) there was no alpha/gamma linkage for the late FDL alpha burst; 3) phasic gamma-efferents in both muscles received similar inputs, linked to plantar flexor alpha activity; and 4) tonic gamma-efferents differed, to the extent that they were modulated at all. The FHL units peaked with the plantar flexor alphas. The FDL neurons generally peaked before alpha activity even began.  (+info)

Static gamma-motoneurones couple group Ia and II afferents of single muscle spindles in anaesthetised and decerebrate cats. (7/114)

Ideas about the functions of static gamma-motoneurones are based on the responses of primary and secondary endings to electrical stimulation of single static gamma-axons, usually at high frequencies. We compared these effects with the actions of spontaneously active gamma-motoneurones. In anaesthetised cats, afferents and efferents were recorded in intramuscular nerve branches to single muscle spindles. The occurrence of gamma-spikes, identified by a spike shape recognition system, was linked to video-taped contractions of type-identified intrafusal fibres in the dissected muscle spindles. When some static gamma-motoneurones were active at low frequency (< 15 Hz) they coupled the firing of group Ia and II afferents. Activity of other static gamma-motoneurones which tensed the intrafusal fibres appeared to enhance this effect. Under these conditions the secondary ending responded at shorter latency than the primary ending. In another series of experiments on decerebrate cats, responses of primary and secondary endings of single muscle spindles to activation of gamma-motoneurones by natural stimuli were compared with their responses to electrical stimulation of single gamma-axons supplying the same spindle. Electrical stimulation mimicked the natural actions of gamma-motoneurones on either the primary or the secondary ending, but not on both together. However, gamma-activity evoked by natural stimuli coupled the firing of afferents with the muscle at constant length, and also when it was stretched. Analysis showed that the timing and tightness of this coupling determined the degree of summation of excitatory postsynaptic potentials (EPSPs) evoked by each afferent in alpha-motoneurones and interneurones contacted by terminals of both endings, and thus the degree of facilitation of reflex actions of group II afferents.  (+info)

Sustained firing of alpha and gamma hind limb motoneurons induced by stimulation of the pudendal nerve. (8/114)

Axons from receptors in the cat vaginal wall run in the sensory pudendal nerve (SPN), and brief (<10 s) vaginal probing (VP) in the decerebrate cat produces a long-lasting (>1 min) contraction of the triceps surae (TS) muscles. The aim of the present project was to find out whether brief SPN stimulation also produces sustained TS response and, eventually, to study the mechanisms involved in it. Decerebrate female cats were used. In some cats, TS electromyography (EMG) and tension response were recorded; stimulation of left SPN with single or repetitive trains of shocks produced a bilateral TS response that outlasted the stimulus >1 min as VP did. In paralyzed cats (pancuronium; Panc), intracellular recordings were made from hind limb motoneurons (MNs). SPN stimulation produced a depolarization 1 min) electroneurographic (ENG) postdischarge in a small filament of the medial gastrocnemius (MG) nerve; the MG EMG postdischarge was also recorded. Large spikes (LS) and small spikes (SS) were distinguished in the ENG. During the postdischarge, LS frequency and the integrated EMG activity correlated well (r > 0.9); no correlation was found between SS and EMG. After Panc injection, LS postdischarge was absent but the SS postdischarge remained. LS followed by EMG potential were also evoked by brief TS stretch (reflex LS); single shocks to SPN only elicited SS that were not followed by EMG potential. It is concluded that alpha axons and gamma axons produced LS and SS, respectively, and that SPN activates gamma axons. It is proposed that, in the nonparalyzed cats, the stimulation of SPN with trains of shocks might cause an increase in the afferent inflow from muscle spindles to alpha MNs through the sustained firing of gamma MNs. The increased excitatory inflow would depolarize alpha MNs and allow bistable MN firing; Panc would decrease this inflow by blocking transmission to the spindle fibers.  (+info)