(1/15570) Standardized nomenclature for inbred strains of mice: sixth listing.

Rules for designating inbred strains of mice are presented, along with a list of strains with their origins and characteristics, a table of biochemical polymorphisms, and standard subline designations.  (+info)

(2/15570) Features of the immune response to DNA in mice. I. Genetic control.

The genetic control of the immune response to DNA was studied in various strains of mice F1 hybrids and corresponding back-crosses immunized with single stranded DNA complexed to methylated bovine serum albumin. Anti-DNA antibody response was measured by radioimmuno-logical technique. High responder, low responder, and intermediate responder strains were found and the ability to respond to DNA was characterized as a dominant genetic trait which is not linked to the major locus of histocompatibility. Studies in back-crosses suggested that this immune response is under multigenic control. High responder mice produce both anti-double stranded DNA and anti-single stranded DNA 7S and 19S antibodies, while low responder mice produce mainly anti-single stranded DNA 19S antibodies.  (+info)

(3/15570) Antitumor effect of allogenic fibroblasts engineered to express Fas ligand (FasL).

Fas ligand is a type II transmembrane protein which can induce apoptosis in Fas-expressing cells. Recent reports indicate that expression of FasL in transplanted cells may cause graft rejection and, on the other hand, tumor cells may lose their tumorigenicity when they are engineered to express FasL. These effects could be related to recruitment of neutrophils by FasL with activation of their cytotoxic machinery. In this study we investigated the antitumor effect of allogenic fibroblasts engineered to express FasL. Fibroblasts engineered to express FasL (PA317/FasL) did not exert toxic effects on transformed liver cell line (BNL) or colon cancer cell line (CT26) in vitro, but they could abrogate their tumorigenicity in vivo. Histological examination of the site of implantation of BNL cells mixed with PA317/FasL revealed massive infiltration of polymorphonuclear neutrophils and mononuclear cells. A specific immune protective effect was observed in animals primed with a mixture of BNL or CT26 and PA317/FasL cells. Rechallenge with tumor cells 14 or 100 days after priming resulted in protection of 100 or 50% of animals, respectively. This protective effect was due to CD8+ cells since depletion of CD8+ led to tumor formation. In addition, treatment of pre-established BNL tumors with a subcutaneous injection of BNL and PA317/FasL cell mixture at a distant site caused significant inhibition of tumor growth. These data demonstrate that allogenic cells engineered with FasL are able to abolish tumor growth and induce specific protective immunity when they are mixed with neoplastic cells.  (+info)

(4/15570) Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase.

The two genetically established antimicrobial mechanisms of macrophages are production of reactive oxygen intermediates by phagocyte oxidase (phox) and reactive nitrogen intermediates by inducible nitric oxide synthase (NOS2). Mice doubly deficient in both enzymes (gp91(phox-/-)/NOS2(-/-)) formed massive abscesses containing commensal organisms, mostly enteric bacteria, even when reared under specific pathogen-free conditions with antibiotics. Neither parental strain showed such infections. Thus, phox and NOS2 appear to compensate for each other's deficiency in providing resistance to indigenous bacteria, and no other pathway does so fully. Macrophages from gp91(phox-/-)/NOS2(-/-) mice could not kill virulent Listeria. Their killing of S. typhimurium, E. coli, and attenuated Listeria was markedly diminished but demonstrable, establishing the existence of a mechanism of macrophage antibacterial activity independent of phox and NOS2.  (+info)

(5/15570) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils.

We have generated mice with a cell type-specific disruption of the Stat3 gene in macrophages and neutrophils. The mutant mice are highly susceptible to endotoxin shock with increased production of inflammatory cytokines such as TNF alpha, IL-1, IFN gamma, and IL-6. Endotoxin-induced production of inflammatory cytokines is augmented because the suppressive effects of IL-10 on inflammatory cytokine production from macrophages and neutrophils are completely abolished. The mice show a polarized immune response toward the Th1 type and develop chronic enterocolitis with age. Taken together, Stat3 plays a critical role in deactivation of macrophages and neutrophils mainly exerted by IL-10.  (+info)

(6/15570) Thymic selection by a single MHC/peptide ligand: autoreactive T cells are low-affinity cells.

In H2-M- mice, the presence of a single peptide, CLIP, bound to MHC class II molecules generates a diverse repertoire of CD4+ cells. In these mice, typical self-peptides are not bound to class II molecules, with the result that a very high proportion of H2-M- CD4+ cells are responsive to the various peptides displayed on normal MHC-compatible APC. We show here, however, that such "self" reactivity is controlled by low-affinity CD4+ cells. These cells give spectacularly high proliferative responses but are virtually unreactive in certain other assays, e.g., skin graft rejection; responses to MHC alloantigens, by contrast, are intense in all assays. Possible explanations for why thymic selection directed to a single peptide curtails self specificity without affecting alloreactivity are discussed.  (+info)

(7/15570) High-linoleate and high-alpha-linolenate diets affect learning ability and natural behavior in SAMR1 mice.

Semipurified diets incorporating either perilla oil [high in alpha-linolenate, 18:3(n-3)] or safflower oil [high in linoleate, 18:2(n-6)] were fed to senescence-resistant SAMR1 mouse dams and their pups. Male offspring at 15 mo were examined using behavioral tests. In the open field test, locomotor activity during a 5-min period was significantly higher in the safflower oil group than in the perilla oil group. Observations of the circadian rhythm (48 h) of spontaneous motor activity indicated that the safflower oil group was more active than the perilla oil group during the first and second dark periods. The total number of responses to positive and negative stimuli was higher in the safflower oil group than in the perilla oil group in the light and dark discrimination learning test, but the correct response ratio was lower in the safflower oil group. The difference in the (n-6)/(n-3) ratios of the diets reflected the proportions of (n-6) polyunsaturated fatty acids, rather than those of (n-3) polyunsaturated fatty acids in the brain total fatty acids, and in the proportions of (n-6) and (n-3) polyunsaturated fatty acids in the total polyunsaturated fatty acids of the brain phospholipids. These results suggest that in SAMR1 mice, the dietary alpha-linolenate/linoleate balance affects the (n-6)/(n-3) ratio of brain phospholipids, and this may modify emotional reactivity and learning ability.  (+info)

(8/15570) Cardiomegaly in the juvenile visceral steatosis (JVS) mouse is reduced with acute elevation of heart short-chain acyl-carnitine level after L-carnitine injection.

The long-term administration of L-carnitine was very effective in preventing cardiomegaly in juvenile visceral steatosis (JVS) mice, which was confirmed by heart weight as well as the lipid contents in heart tissue. After i.p. injection of L-carnitine, the concentration of free carnitine in heart remained constant, although serum free carnitine level increased up to 80-fold. On the other hand, a significant increase in short-chain acyl-carnitine level in heart was observed. These results suggest that increased levels of short-chain acyl-carnitine, not free carnitine, might be a key compound in the protective effect of L-carnitine administration in JVS mice.  (+info)