High-linoleate and high-alpha-linolenate diets affect learning ability and natural behavior in SAMR1 mice. (1/1169)

Semipurified diets incorporating either perilla oil [high in alpha-linolenate, 18:3(n-3)] or safflower oil [high in linoleate, 18:2(n-6)] were fed to senescence-resistant SAMR1 mouse dams and their pups. Male offspring at 15 mo were examined using behavioral tests. In the open field test, locomotor activity during a 5-min period was significantly higher in the safflower oil group than in the perilla oil group. Observations of the circadian rhythm (48 h) of spontaneous motor activity indicated that the safflower oil group was more active than the perilla oil group during the first and second dark periods. The total number of responses to positive and negative stimuli was higher in the safflower oil group than in the perilla oil group in the light and dark discrimination learning test, but the correct response ratio was lower in the safflower oil group. The difference in the (n-6)/(n-3) ratios of the diets reflected the proportions of (n-6) polyunsaturated fatty acids, rather than those of (n-3) polyunsaturated fatty acids in the brain total fatty acids, and in the proportions of (n-6) and (n-3) polyunsaturated fatty acids in the total polyunsaturated fatty acids of the brain phospholipids. These results suggest that in SAMR1 mice, the dietary alpha-linolenate/linoleate balance affects the (n-6)/(n-3) ratio of brain phospholipids, and this may modify emotional reactivity and learning ability.  (+info)

Stimulation of strontium accumulation in linoleate-enriched Saccharomyces cerevisiae is a result of reduced Sr2+ efflux. (2/1169)

The influence of modified plasma membrane fatty acid composition on cellular strontium accumulation in Saccharomyces cerevisiae was investigated. Growth of S. cerevisiae in the presence of 1 mM linoleate (18:2) (which results in 18:2 incorporation to approximately 70% of total cellular and plasma membrane fatty acids, with no effect on growth rate) yielded cells that accumulated Sr2+ intracellularly at approximately twice the rate of S. cerevisiae grown without a fatty acid supplement. This effect was evident over a wide range of external Sr2+ concentrations (25 microM to 5 mM) and increased with the extent of cellular 18:2 incorporation. Stimulation of Sr2+ accumulation was not evident following enrichment of S. cerevisiae with either palmitoleate (16:1), linolenate (18:3) (n-3 and n-6 isomers), or eicosadienoate (20:2) (n-6 and n-9 isomers). Competition experiments revealed that Ca2+- and Mg2+-induced inhibition of Sr2+ accumulation did not differ between unsupplemented and 18:2-supplemented cells. Treatment with trifluoperazine (TFP) (which can act as a calmodulin antagonist and Ca2+-ATPase inhibitor), at a low concentration that precluded nonspecific K+ efflux, increased intracellular Sr2+ accumulation by approximately 3.6- and 1.4-fold in unsupplemented and 18:2-supplemented cells, respectively. Thus, TFP abolished the enhanced Sr2+ accumulation ability of 18:2-supplemented cells. Moreover, the rate of Sr2+ release from Sr2+-loaded fatty acid-unsupplemented cells was found to be at least twice as great as that from Sr2+-loaded 18:2-enriched cells. The influence of enrichment with other fatty acids on Sr2+ efflux was variable. The results reveal an enhanced Sr2+ accumulation ability of S. cerevisiae following 18:2-enrichment, which is attributed to diminished Sr2+ efflux activity in these cells.  (+info)

Cholesteryl ester hydroperoxide lability is a key feature of the oxidative susceptibility of small, dense LDL. (3/1169)

Abundant evidence has been provided to substantiate the elevated cardiovascular risk associated with small, dense, low density lipoprotein (LDL) particles. The diminished resistance of dense LDL to oxidative stress in both normolipidemic and dyslipidemic subjects is established; nonetheless, the molecular basis of this phenomenon remains indeterminate. We have defined the primary molecular targets of lipid hydroperoxide formation in light, intermediate, and dense subclasses of LDL after copper-mediated oxidation and have compared the relative stabilities of the hydroperoxide derivatives of phospholipids and cholesteryl esters (CEs) as a function of the time course of oxidation. LDL subclasses (LDL1 through LDL5) were isolated from normolipidemic plasma by isopycnic density gradient ultracentrifugation, and their content of polyunsaturated molecular species of phosphatidylcholine (PC) and CE and of lipophilic antioxidants was quantified by reverse-phase high-performance liquid chromatography. The molar ratio of the particle content of polyunsaturated CE and PC species containing linoleate or arachidonate relative to alpha-tocopherol or beta-carotene did not differ significantly between LDL subspecies. Nonetheless, dense LDL contained significantly less polyunsaturated CE species (400 mol per particle) compared with LDL1 through LDL4 (range, approximately 680 to 490 mol per particle). Although the formation of PC-derived hydroperoxides did not vary significantly between LDL subspecies as a function of the time course of copper-mediated oxidation, the abundance of the C18:2 and C20:4 CE hydroperoxides was uniquely deficient in dense LDL (23 and 0.6 mol per particle, respectively, in LDL5; 47 to 58 and 1.9 to 2.3 mol per particle, respectively, in other LDL subclasses) at propagation half-time. When expressed as a lability ratio (mol hydroperoxides formed relative to each 100 mol of substrate consumed) at half-time, the oxidative lability of CE hydroperoxides in dense LDL was significantly elevated (lability ratio <25:100) relative to that in lighter, larger LDL particle subclasses (lability ratio >40:100) throughout the oxidative time course. We conclude that the elevated lability of CE hydroperoxides in dense LDL underlies the diminished oxidative resistance of these particles. Moreover, this phenomenon appears to result not only from the significantly elevated PC to free cholesterol ratio (1.54:1) in dense LDL particles (1.15:1 to 1.25:1 for other LDL subclasses) but also from their unique structural features, including a distinct apoB100 conformation, which may facilitate covalent bond formation between oxidized CE and apoB100.  (+info)

Fatty acids modulate the composition of extracellular matrix in cultured human arterial smooth muscle cells by altering the expression of genes for proteoglycan core proteins. (4/1169)

In diabetes-associated microangiopathies and atherosclerosis, there are alterations of the extracellular matrix (ECM) in the intima of small and large arteries. High levels of circulating nonesterified fatty acids (NEFAs) are present in insulin resistance and type 2 diabetes. High concentrations of NEFAs might alter the basement membrane composition of endothelial cells. In arteries, smooth muscle cells (SMCs) are the major producers of proteoglycans and glycoproteins in the intima, and this is the site of lipoprotein deposition and modification, key events in atherogenesis. We found that exposure of human arterial SMCs to 100-300 micromol/albumin-bound linoleic acid lowered their proliferation rate and altered cell morphology. SMCs expressed 2-10 times more mRNA for the core proteins of the proteoglycans versican, decorin, and syndecan 4 compared with control cells. There was no change in expression of fibronectin and perlecan. The decorin glycosaminoglycan chains increased in size after exposure to linoleic acid. The ECM produced by cells grown in the presence of linoleic acid bound 125I-labeled LDL more tightly than that of control cells. Darglitazone, a peroxisome proliferator-activated receptor (PPAR)-gamma ligand, neutralized the NEFA-mediated induction of the decorin gene. This suggests that some of the NEFA effects are mediated by PPAR-gamma. These actions of NEFAs, if present in vivo, could contribute to changes of the matrix of the arterial intima associated with micro- and macroangiopathies.  (+info)

Conjugated linoleic acid inhibits differentiation of pre- and post- confluent 3T3-L1 preadipocytes but inhibits cell proliferation only in preconfluent cells. (5/1169)

Conjugated linoleic acid (CLA; 18:2) is a group of isomers (mainly 9-cis, 11-trans and 10-trans, 12-cis) of linoleic acid. CLA is the product of rumen fermentation and can be found in the milk and muscle of ruminants. Animals fed CLA have a lower body fat content. The objective of this study was to establish the possible mechanisms by which CLA affects adipogenesis. 3T3-L1 is a well-established cell line that is used extensively in studying adipocyte biology. These cells typically grow in a culture medium until they reach confluence, at which time they are induced to differentiate by hormonal treatment (d 0). Treatment of 3T3-L1 cells with 25 to 100 micromol/L CLA inhibited differentiation in a dose-dependent manner, while linoleic acid treatment did not differ from DMSO-treated controls. Continuous treatment from d -2, -1, 0 or 2 to d 8 and treatment from d -2 to d 0 and from d 0 to d 2 inhibited differentiation. Differentiation was monitored morphologically (oil Red-O staining), enzymatically (reduction of activity of glycerol-3-phosphate dehydrogenase), and by northern analysis of peroxisome proliferator-activated receptor gamma2, CCAAT/enhancer binding protein alpha and adipocyte specific protein 2 mRNA. CLA inhibited cell proliferation of nonconfluent cells but did not affect cell division of confluent cells, as indicated by 5-bromo-2'-deoxyuridine incorporation and mitochondria metabolism. Therefore, CLA inhibited differentiation before confluence and during induction. However, cellular proliferation was only inhibited prior to induction. These results imply that fat reduction caused by CLA treatment may be attributed to its inhibition of both proliferation and differentiation of preadipocytes in animals.  (+info)

Uptake of 13-hydroperoxylinoleic acid by cultured cells. (6/1169)

Oxidized free fatty acids have profound effects on cultured cells. However, little is known about whether these effects depend on their uptake and metabolism by cells or primarily involve their interaction with cell-surface components. We determined the uptake and metabolism of unoxidized (linoleic or oleic acid) and oxidized linoleic acid (13-hydroperoxyoctadecadienoic acid, 13-HPODE) by endothelial cells, smooth muscle cells, and macrophages. We show that 13-HPODE is poorly taken up by cells. The levels of uptake were dependent on the cell type but were independent of the expression of CD36. 13-HPODE was also poorly used by microsomal lysophosphatidylcholine acyltransferase that is involved in the formation of phosphatidylcholine. Based on these results, we suggest that most of the biological effects of 13-HPODE and other oxidized free fatty acids on cells might involve a direct interaction with cell-surface components. Alternatively, very small amounts of oxidized free fatty acids that enter the cell may have effects, analogous to those of hormones or prostanoids.  (+info)

Regulation of 15-lipoxygenase expression and mucus secretion by IL-4 in human bronchial epithelial cells. (7/1169)

Our laboratory has recently shown that mucus differentiation of cultured normal human tracheobronchial epithelial (NHTBE) cells is accompanied by the increased expression of 15-lipoxygenase (15-LO). We used differentiated NHTBE cells to investigate the regulation of 15-LO expression and mucus secretion by inflammatory cytokines. Interleukin (IL)-4 and IL-13 dramatically enhanced the expression of 15-LO, whereas tumor necrosis factor-alpha, IL-1beta, and interferon (IFN)-gamma had no effect. These cytokines did not increase the expression of cyclooxygenase-2, with the exception of a modest induction by IL-1beta. The IL-4-induced 15-LO expression was concentration dependent, and mRNA and protein expression increased within 3 and 6 h, respectively, after IL-4 treatment. In metabolism studies with intact cells, 15-hydroxyeicosatetraenoic acid (15-HETE) and 13-hydroxyoctadecadienoic acid (13-HODE) were the major metabolites formed from exogenous arachidonic acid and linoleic acid. No prostaglandins were detected. IL-4 treatment dramatically increased the formation of 13-HODE and 15-HETE compared with that in untreated NHTBE cells, and several additional 15-LO metabolites were observed. Pretreatment of NHTBE cells with IFN-gamma or dexamethasone did not inhibit the IL-4-induced expression of 15-LO except at high concentrations (100 ng/ml of IFN-gamma and 10 microM dexamethasone). IL-4 treatment inhibited mucus secretion and attenuated the expression of the mucin genes MUC5AC and MUC5B at 12-24 h after treatment. Addition of 15-HETE precursor and 13-HODE precursor to the cultures did not alter mucin secretion or mucin gene expression. On the basis of the data presented, we conclude that the increase in 15-LO expression by IL-4 and attenuation of mucus secretion may be independent biological events.  (+info)

Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. (8/1169)

Recent reports have demonstrated that conjugated linoleic acid (CLA) has effects on body fat accumulation. In our previous work, CLA reduced body fat accumulation in mice fed either a high-fat or low-fat diet. Although CLA feeding reduced energy intake, the results suggested that some of the metabolic effects were not a consequence of the reduced food intake. We therefore undertook a study to determine a dose of CLA that would have effects on body composition without affecting energy intake. Five doses of CLA (0.0, 0.25, 0.50, 0.75, and 1.0% by weight) were studied in AKR/J male mice (n = 12/group; age, 39 days) maintained on a high-fat diet (%fat 45 kcal). Energy intake was not suppressed by any CLA dose. Body fat was significantly lower in the 0.50, 0.75, and 1.0% CLA groups compared with controls. The retroperitoneal depot was most sensitive to the effects of CLA, whereas the epididymal depot was relatively resistant. Higher doses of CLA also significantly increased carcass protein content. A time-course study of the effects of 1% CLA on body composition showed reductions in fat pad weights within 2 wk and continued throughout 12 wk of CLA feeding. In conclusion, CLA feeding produces a rapid, marked decrease in fat accumulation, and an increase in protein accumulation, at relatively low doses without any major effects on food intake.  (+info)