Biophysical characterization of the structure of the amino-terminal region of gp41 of HIV-1. Implications on viral fusion mechanism. (1/15260)

A peptide of 51 amino acids corresponding to the NH2-terminal region (5-55) of the glycoprotein gp41 of human immunodeficiency virus type 1 was synthesized to study its conformation and assembly. Nuclear magnetic resonance experiments indicated the sequence NH2-terminal to the leucine zipper-like domain of gp41 was induced into helix in the micellar solution, in agreement with circular dichroism data. Light scattering experiment showed that the peptide molecules self-assembled in water into trimeric structure on average. That the peptide molecules oligomerize in aqueous solution was supported by gel filtration and diffusion coefficient experiments. Molecular dynamics simulation based on the NMR data revealed a flexible region adjacent to the hydrophobic NH2 terminus of gp41. The biological significance of the present findings on the conformational flexibility and the propensity of oligomerization of the peptide may be envisioned by a proposed model for the interaction of gp41 with membranes during fusion process.  (+info)

Aggregation of deoxyhemoglobin S at low concentrations. (2/15260)

The self-association of deoxyhemoglobin S was measured in dilute solutions (0 to 5 g/dl) by Rayleigh light scattering at 630 nm and osmometry in 0.05 M potassium phosphate buffer (pH 7.35). Weight and number average molecular weights (Mw and Mn, respectively) and the second or higher virial coefficients, B' were determined. No experimentally significant differences were observed between oxy- and deoxy-Hb S up to the concentration of 2 g/dl; their apparent average molecular weights were within experimental error. Above that concentration, both Mn and Mw of deoxy-Hb S were significantly different from that of oxy-Hb S. The negative second viral coefficent of deoxy-Hb S, observed by both techniques, is consistent with the self-association of this protein. The lack of effect of 0.4 M propylurea on the state of aggregation and the significant influence of 0.1 M NaCl suggests that polar interactions are involved in formation of these aggregates.  (+info)

Improvement of systemic 5-aminolevulinic acid-based photodynamic therapy in vivo using light fractionation with a 75-minute interval. (3/15260)

We have studied different single and fractionated illumination schemes after systemic administration of 5-aminolevulinic acid (ALA) to Improve the response of nodular tumors to ALA-mediated photodynamic therapy. Tumors transplanted on the thigh of female WAG/Rij rats were transdermally illuminated with red light (633 nm) after systemic ALA administration (200 mg/kg). The effectiveness of each treatment scheme was determined from the tumor volume doubling time. A single illumination (100 J/cm2 at 100 mW/cm2, 2.5 h after ALA administration) yielded a doubling time of 6.6+/-1.2 days. This was significantly different from the untreated control (doubling time, 1.7+/-0.1 days). The only treatment scheme that yielded a significant improvement compared to all other schemes studied was illumination at both 1 and 2.5 h after ALA administration (both 100 J/cm2 at 100 mW/cm2) and resulted in a tumor volume doubling time of 18.9+/-2.9 days. A possible mechanism to explain this phenomenon is that the protoporphyrin IX formed after administration of ALA is photodegraded by the first illumination. In the 75-min interval, new porphyrin is formed enhancing the effect of the second illumination.  (+info)

The neuronal basis of a sensory analyser, the acridid movement detector system. I. Effects of simple incremental and decremental stimuli in light and dark adapted animals. (4/15260)

1. The response of the movement detector (MD) system to proportionally constant incremental and decremental stimuli has been studied at various degrees of light and dark adaptation. Action potentials in the descending contralateral movement detector neurone were taken as the indicator of response. 2. Over a range of at least six log10 units of adapting luminance, the MD system behaves as an ON/OFF unit, giving responses to both incremental and decremental changes in the illumination of a 5 degrees target. 3. With increasing amplitudes of stimuli, both the ON and OFF responses saturate rapidly. Saturation is reached sooner at higher levels of light adaptation. At all levels of light adaptation, the OFF response is greater than the ON. The ratio for saturating stimuli is approximately constant at around 3:2. 4. At the brightest adapting luminances used (20 000 cd/m2) the ON response is reduced but not lost. At the lowest (0-004 cd/m2) the OFF response to a 5 degrees disc fails, but can be regained by increasing the test area to 10 degrees. 5. From what is known of the retina of locusts and other insects, it is thought that light and dark adaptation in the MD system can be adequately explained by events at the retinula cell.  (+info)

Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. (5/15260)

Visual activity is thought to be a critical factor in controlling the development of central retinal projections. Neuronal activity increases cytosolic calcium, which was hypothesized to regulate process outgrowth in neurons. We performed an in vivo imaging study in the retinotectal system of albino Xenopus laevis tadpoles with the fluorescent calcium indicator calcium green 1 dextran (CaGD) to test the role of calcium in regulating axon arbor development. We find that visual stimulus to the retina increased CaGD fluorescence intensity in retinal ganglion cell (RGC) axon arbors within the optic tectum and that branch additions to retinotectal axon arbors correlated with a local rise in calcium in the parent branch. We find three types of responses to visual stimulus, which roughly correlate with the ON, OFF, and SUSTAINED response types of RGC reported by physiological criteria. Imaging in bandscan mode indicated that patterns of calcium transients were nonuniform throughout the axons. We tested whether the increase in calcium in the retinotectal axons required synaptic activity in the retina; intraocular application of tetrodotoxin (10 microM) or nifedipine (1 and 10 microM) blocked the stimulus-induced increase in RGC axonal fluorescence. A second series of pharmacological investigations was designed to determine the mechanism of the calcium elevation in the axon terminals within the optic tectum. Injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM) (20 mM) into the tectal ventricle reduced axonal calcium levels, supporting the idea that visual stimulation increases axonal calcium. Injection of BAPTA (20 mM) into the tectal ventricle to chelate extracellular calcium also attenuated the calcium response to visual stimulation, indicating that calcium enters the axon from the extracellular medium. Caffeine (10 mM) caused a large increase in axonal calcium, indicating that intracellular stores contribute to the calcium signal. Presynaptic nicotinic acetylcholine receptors (nAChRs) may play a role in axon arbor development and the formation of the topographic retinotectal projection. Injection of nicotine (10 microM) into the tectal ventricle significantly elevated RGC axonal calcium levels, whereas application of the nAChR antagonist alphaBTX (100 nM) reduced the stimulus-evoked rise in RGC calcium fluorescence. These data suggest that light stimulus to the retina increases calcium in the axon terminal arbors through a mechanism that includes influx through nAChRs and amplification by calcium-induced calcium release from intracellular calcium stores. Such a mechanism may contribute to developmental plasticity of the retinotectal system by influencing both axon arbor elaboration and the strength of synaptic transmission.  (+info)

Why and how is soft copy reading possible in clinical practice? (6/15260)

The properties of the human visual system (HVS) relevant to the diagnostic process are described after a brief introduction on the general problems and advantages of using soft copy for primary radiology interpretations. At various spatial and temporal frequencies the contrast sensitivity defines the spatial resolution of the eye-brain system and the sensitivity to flicker. The adaptation to the displayed radiological scene and the ambient illumination determine the dynamic range for the operation of the HVS. Although image display devices are determined mainly by state-of-the-art technology, analysis of the HVS may suggest technical characteristics for electronic displays that will help to optimize the display to the operation of the HVS. These include display size, spatial resolution, contrast resolution, luminance range, and noise, from which further consequences for the technical components of a monitor follow. It is emphasized that routine monitor quality control must be available in clinical practice. These image quality measures must be simple enough to be applied as part of the daily routine. These test instructions might also serve as elements of technical acceptance and constancy tests.  (+info)

Role of a novel photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii. (7/15260)

Intracellular carbonic anhydrases (CA) in aquatic photosynthetic organisms are involved in the CO2-concentrating mechanism (CCM), which helps to overcome CO2 limitation in the environment. In the green alga Chlamydomonas reinhardtii, this CCM is initiated and maintained by the pH gradient created across the chloroplast thylakoid membranes by photosystem (PS) II-mediated electron transport. We show here that photosynthesis is stimulated by a novel, intracellular alpha-CA bound to the chloroplast thylakoids. It is associated with PSII on the lumenal side of the thylakoid membranes. We demonstrate that PSII in association with this lumenal CA operates to provide an ample flux of CO2 for carboxylation.  (+info)

The localisation of 2-carboxy-D-arabinitol 1-phosphate and inhibition of Rubisco in leaves of Phaseolus vulgaris L. (8/15260)

A recent controversial report suggests that the nocturnal inhibitor of Rubisco, 2-carboxy-D-arabinitol 1-phosphate (CAIP), does not bind to Rubisco in vivo and therefore that CA1P has no physiological relevance to photosynthetic regulation. It is now proved that a direct rapid assay can be used to distinguish between Rubisco-bound and free CA1P, as postulated in the controversial report. Application of this direct assay demonstrates that CA1P is bound to Rubisco in vivo in dark-adapted leaves. Furthermore, CA1P is shown to be in the chloroplasts of mesophyll cells. Thus, CA1P does play a physiological role in the regulation of Rubisco.  (+info)