Loading...
(1/2991) Transcriptional repression by the Drosophila giant protein: cis element positioning provides an alternative means of interpreting an effector gradient.

Early developmental patterning of the Drosophila embryo is driven by the activities of a diverse set of maternally and zygotically derived transcription factors, including repressors encoded by gap genes such as Kruppel, knirps, giant and the mesoderm-specific snail. The mechanism of repression by gap transcription factors is not well understood at a molecular level. Initial characterization of these transcription factors suggests that they act as short-range repressors, interfering with the activity of enhancer or promoter elements 50 to 100 bp away. To better understand the molecular mechanism of short-range repression, we have investigated the properties of the Giant gap protein. We tested the ability of endogenous Giant to repress when bound close to the transcriptional initiation site and found that Giant effectively represses a heterologous promoter when binding sites are located at -55 bp with respect to the start of transcription. Consistent with its role as a short-range repressor, as the binding sites are moved to more distal locations, repression is diminished. Rather than exhibiting a sharp 'step-function' drop-off in activity, however, repression is progressively restricted to areas of highest Giant concentration. Less than a two-fold difference in Giant protein concentration is sufficient to determine a change in transcriptional status of a target gene. This effect demonstrates that Giant protein gradients can be differentially interpreted by target promoters, depending on the exact location of the Giant binding sites within the gene. Thus, in addition to binding site affinity and number, cis element positioning within a promoter can affect the response of a gene to a repressor gradient. We also demonstrate that a chimeric Gal4-Giant protein lacking the basic/zipper domain can specifically repress reporter genes, suggesting that the Giant effector domain is an autonomous repression domain.  (+info)

(2/2991) Accelerated accumulation of somatic mutations in mice deficient in the nucleotide excision repair gene XPA.

Inheritable mutations in nucleotide excision repair (NER) genes cause cancer-prone human disorders, such as xeroderma pigmentosum, which are also characterized by symptoms of accelerated ageing. To study the impact of NER deficiency on mutation accumulation in vivo, mutant frequencies have been determined in liver and brain of 2-16 month old NER deficient XPA-/-, lacZ hybrid mice. While mutant frequencies in liver of 2-month old XPA-/-, lacZ mice were comparable to XPA+/-, lacZ and the lacZ parental strain animals, by 4 months of age mutant frequencies in the XPA-deficient mice were significantly increased by a factor of two and increased further until the age of 16 months. In brain, mutant frequencies were not found to increase with age. These results show that a deficiency in the NER gene XPA causes an accelerated accumulation of somatic mutations in liver but not in brain. This is in keeping with a higher incidence of spontaneous liver tumors reported earlier for XPA-/- mice after about 15 months of age.  (+info)

(3/2991) Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade.

This study characterized gene transfer into both normal and injured adult rat dorsal spinal cord using first (E1-/E3-) or second (E1-/E2A125/E3-, temperature-sensitive; ts) generation of replication-defective adenoviral (Ad) vectors. A novel immunosuppressive regimen aimed at blocking CD4/CD45 lymphocytic receptors was tested for improving transgene persistence. In addition, the effect of gene transfer on nociception was also evaluated. Seven days after treatment, numerous LacZ-positive cells were observed after transfection with either viral vector. By 21 days after transfection, beta-galactosidase staining was reduced and suggestive of ongoing cytopathology in both Ad-treated groups, despite the fact that the immunogenicity of LacZ/Adts appeared less when compared with that elicited by the LacZ/Ad vector. In contrast, immunosuppressed animals showed a significant (P < or = 0.05) increase in the number of LacZ-positive cells not displaying cytopathology. In these animals, a concomitant reduction in numbers of macrophages/microglia and CD4 and CD8 lymphocytes was observed. Only animals that received LacZ/Adts and immunosuppression showed transgene expression after 60 days. Similar results were observed in animals in which the L4-L5 dorsal roots were lesioned before transfection. Gene transfer into the dorsal spinal cord did not affect nociception, independent of the adenovirus vector. These results indicate that immune blockade of the CD4/CD45 lymphocytic receptors enhanced transgene stability in adult animals with normal or injured spinal cords and that persistent transgene expression in the spinal cord does not interfere with normal neural function.  (+info)

(4/2991) Transduction of glioma cells using a high-titer retroviral vector system and their subsequent migration in brain tumors.

The intracranial migration of transduced glioma cells was investigated in order to improve the treatment of malignant glioma by gene therapy using retroviral vectors. In this study, about half the volume of the tumor mass could be transduced in 14 days after only a single implantation of 3 x 10(5) retrovirus-producing cells into a tumor mass with a diameter of 5 mm. Moreover, we were able to follow the migration of glioma cells transduced by the lacZ-harboring retroviruses originating from the high-titer retrovirus-producing cells. Besides the importance of using a high-titer retroviral vector system, our results also indicate that the implantation site of the virus-producing cells and the interval between the implantation of the virus-producing cells and the subsequent administration of ganciclovir are important factors for the efficient killing of glioma cells.  (+info)

(5/2991) Murine matrix metalloproteinase 9 gene. 5'-upstream region contains cis-acting elements for expression in osteoclasts and migrating keratinocytes in transgenic mice.

Knowledge about the regulation of cell lineage-specific expression of extracellular matrix metalloproteinases is limited. In the present work, the murine matrix metalloproteinase 9 (MMP-9) gene was shown to contain 13 exons, and the 2.8-kilobase pair upstream region was found to contain several common promoter elements including a TATA box-like motif, three GC boxes, four AP-1-like binding sites, an AP-2 site, and three PEA3 consensus sequences that may be important for basic activity of the gene. In order to identify cell-specific regulatory elements, constructs containing varying lengths of the upstream region in front of a LacZ reporter gene were made and studied for expression in transgenic mice generated by microinjection into fertilized oocytes. Analyses of the mice revealed that the presence of sequences between -2722 and -7745 allowed for expression in osteoclasts and migrating keratinocytes, i. e. cells that have been shown to normally express the enzyme in vivo. The results represent the first in vivo demonstration of the location of cell-specific control elements in a matrix metalloproteinase gene and show that element(s) regulating most cell-specific activities of 92-kDa type collagenase are located in the -2722 to -7745 base pair region.  (+info)

(6/2991) Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle.

To gain insight into the regeneration deficit of MyoD-/- muscle, we investigated the growth and differentiation of cultured MyoD-/- myogenic cells. Primary MyoD-/- myogenic cells exhibited a stellate morphology distinct from the compact morphology of wild-type myoblasts, and expressed c-met, a receptor tyrosine kinase expressed in satellite cells. However, MyoD-/- myogenic cells did not express desmin, an intermediate filament protein typically expressed in cultured myoblasts in vitro and myogenic precursor cells in vivo. Northern analysis indicated that proliferating MyoD-/- myogenic cells expressed fourfold higher levels of Myf-5 and sixfold higher levels of PEA3, an ETS-domain transcription factor expressed in newly activated satellite cells. Under conditions that normally induce differentiation, MyoD-/- cells continued to proliferate and with delayed kinetics yielded reduced numbers of predominantly mononuclear myocytes. Northern analysis revealed delayed induction of myogenin, MRF4, and other differentiation-specific markers although p21 was upregulated normally. Expression of M-cadherin mRNA was severely decreased whereas expression of IGF-1 was markedly increased in MyoD-/- myogenic cells. Mixing of lacZ-labeled MyoD-/- cells and wild-type myoblasts revealed a strict autonomy in differentiation potential. Transfection of a MyoD-expression cassette restored cytomorphology and rescued the differentiation deficit. We interpret these data to suggest that MyoD-/- myogenic cells represent an intermediate stage between a quiescent satellite cell and a myogenic precursor cell.  (+info)

(7/2991) Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei.

Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to a wide range of antimicrobial agents including beta-lactams, aminoglycosides, macrolides, and polymyxins. We used Tn5-OT182 to mutagenize B. pseudomallei to identify the genes involved in aminoglycoside resistance. We report here on the identification of AmrAB-OprA, a multidrug efflux system in B. pseudomallei which is specific for both aminoglycoside and macrolide antibiotics. We isolated two transposon mutants, RM101 and RM102, which had 8- to 128-fold increases in their susceptibilities to the aminoglycosides streptomycin, gentamicin, neomycin, tobramycin, kanamycin, and spectinomycin. In addition, both mutants, in contrast to the parent, were susceptible to the macrolides erythromycin and clarithromycin but not to the lincosamide clindamycin. Sequencing of the DNA flanking the transposon insertions revealed a putative operon consisting of a resistance, nodulation, division-type transporter, a membrane fusion protein, an outer membrane protein, and a divergently transcribed regulatorprotein. Consistent with the presence of an efflux system, both mutants accumulated [3H] dihydro streptomycin, whereas the parent strain did not. We constructed an amr deletion strain, B. pseudomallei DD503, which was hypersusceptible to aminoglycosides and macrolides and which was used successfully in allelic exchange experiments. These results suggest that an efflux system is a major contributor to the inherent high-level aminoglycoside and macrolide resistance found in B. pseudomallei.  (+info)

(8/2991) Aging-specific expression of Drosophila hsp22.

hsp22 is among the least abundantly expressed Drosophila heat shock (hs) genes during both development and heat stress. In contrast, hsp22 was found to be the most abundantly expressed hs gene during Drosophila aging. During aging, hsp22 RNA was induced 60-fold in the head, with somewhat lower level induction in abdomen and thorax. Induction of the other hs gene RNAs was 150-fold, with particularly abundant expression in eye tissue. Aging-specific induction of hsp22 was reproduced by hsp22:lacZ fusion reporter constructs in transgenic flies. Analysis of specific promoter mutations in transgenic flies indicated that functional heat shock response elements are required for hsp22 induction during aging. Finally, comparison of hsp22 RNA and protein expression patterns suggests that aging-specific expression of hsp22 is regulated at both the transcriptional and the posttranscriptional levels. Aging-specific induction of hsp22 is discussed with regard to current evolutionary theories of aging.  (+info)