Posttranslational regulation of the retinoblastoma gene family member p107 by calpain protease. (1/1302)

The retinoblastoma protein plays a critical role in regulating the G1/S transition. Less is known about the function and regulation of the homologous pocket protein p107. Here we present evidence for the posttranslational regulation of p107 by the Ca2+-activated protease calpain. Three negative growth regulators, the HMG-CoA reductase inhibitor lovastatin, the antimetabolite 5-fluorouracil, and the cyclic nucleotide dibutyryl cAMP were found to induce cell type-specific loss of p107 protein which was reversible by the calpain inhibitor leucyl-leucyl-norleucinal but not by the serine protease inhibitor phenylmethylsulfonylfluoride, caspase inhibitors, or lactacystin, a specific inhibitor of the 26S proteasome. Purified calpain induced Ca2+-dependent p107 degradation in cell lysates. Transient expression of the specific calpain inhibitor calpastatin blocked the loss of p107 protein in lovastatin-treated cells, and the half-life of p107 was markedly lengthened in lovastatian-treated cells stably transfected with a calpastatin expression vector versus cells transfected with vector alone. The data presented here demonstrate down-regulation of p107 protein in response to various antiproliferative signals, and implicate calpain in p107 posttranslational regulation.  (+info)

Metabolism of the antimalarial endoperoxide Ro 42-1611 (arteflene) in the rat: evidence for endoperoxide bioactivation. (2/1302)

Ro 42-1611 (arteflene) is a synthetic endoperoxide antimalarial. The antimalarial activity of endoperoxides is attributed to iron(II)-mediated generation of carbon-centered radicals. An alpha, beta-unsaturated ketone (enone; 4-[2',4' bis(trifluoromethyl)phenyl]-3-buten-2-one), obtained from arteflene by reaction with iron(II), was identified previously as the stable product of a reaction that, by inference, also yields a cyclohexyl radical. The activation of arteflene in vivo has been characterized with particular reference to enone formation. [14C]Arteflene (35 micromol/kg) was given i.v. to anesthetized and cannulated male rats: 42.2 +/- 7.0% (mean +/- S.D., n = 7) of the radiolabel was recovered in bile over 5 h. In the majority of rats, the principal biliary metabolites were 8-hydroxyarteflene glucuronide (14.2 +/- 3. 9% dose, 0-3 h) and the cis and trans isomers of the enone (13.5 +/- 4.6% dose, 0-3 h). In conscious rats, 15.3 +/- 1.6% (mean +/- S.D., n = 8) of the radiolabel was recovered in urine over 24 h. The principal urinary metabolite appeared to be a glycine conjugate of a derivative of the enone. Biliary excretion of the glucuronide, but not of the enones, was inhibited by ketoconazole. 8-Hydroxyarteflene was formed extensively by rat and human liver microsomes but no enone was found. Bioactivation is a major pathway of arteflene's metabolism in the rat. Although the mechanism of in vivo bioactivation is unclear, the reaction is not catalyzed by microsomal cytochrome P-450 enzymes.  (+info)

Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes. (3/1302)

The single recombinant expressing the Streptomyces coelicolor minimal whiE (spore pigment) polyketide synthase (PKS) is uniquely capable of generating a large array of well more than 30 polyketides, many of which, so far, are novel to this recombinant. The characterized polyketides represent a diverse set of molecules that differ in size (chain length) and shape (cyclization pattern). This combinatorial biosynthetic library is, by far, the largest and most complex of its kind described to date and indicates that the minimal whiE PKS does not independently control polyketide chain length nor dictate the first cyclization event. Rather, the minimal PKS enzyme complex must rely on the stabilizing effects of additional subunits (i.e., the cyclase whiE-ORFVI) to ensure that the chain reaches the full 24 carbons and cyclizes correctly. This dramatic loss of control implies that the growing polyketide chain does not remain enzyme bound, resulting in the spontaneous cyclization of the methyl terminus. Among the six characterized dodecaketides, four different first-ring cyclization regiochemistries are represented, including C7/C12, C8/C13, C10/C15, and C13/C15. The dodecaketide TW93h possesses a unique 2,4-dioxaadamantane ring system and represents a new structural class of polyketides with no related structures isolated from natural or engineered organisms, thus supporting the claim that engineered biosynthesis is capable of producing novel chemotypes.  (+info)

Oxidation of medium-chain acyl-CoA esters by extracts of Aspergillus niger: enzymology and characterization of intermediates by HPLC. (4/1302)

The activities of beta-oxidation enzymes were measured in extracts of glucose- and triolein-grown cells of Aspergillus niger. Growth on triolein stimulated increased enzyme activity, especially for acyl-CoA dehydrogenase. No acyl-CoA oxidase activity was detected. HPLC analysis after incubation of triolein-grown cell extracts with decanoyl-CoA showed that beta-oxidation was limited to one cycle. Octanoyl-CoA accumulated as the decanoyl-CoA was oxidized. Beta-oxidation enzymes in isolated mitochondrial fractions were also studied. The results are discussed in the context of methyl ketone production by fungi.  (+info)

Novel nonsecosteroidal vitamin D mimics exert VDR-modulating activities with less calcium mobilization than 1,25-dihydroxyvitamin D3. (5/1302)

BACKGROUND: The secosteroid 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) acts through the vitamin D receptor (VDR) to elicit many activities that make it a promising drug candidate for the treatment of a number of diseases, including cancer and psoriasis. Clinical use of 1,25(OH)2D3 has been limited by hypercalcemia elicited by pharmacologically effective doses. We hypothesized that structurally distinct, nonsecosteroidal mimics of 1,25(OH)2D3 might have different activity profiles from vitamin D analogs, and set out to discover such compounds by screening small-molecule libraries. RESULTS: A bis-phenyl derivative was found to activate VDR in a transactivation screening assay. Additional related compounds were synthesized that mimicked various activities of 1,25(OH)2D3, including growth inhibition of cancer cells and keratinocytes, as well as induction of leukemic cell differentiation. In contrast to 1, 25(OH)2D3, these synthetic compounds did not demonstrate appreciable binding to serum vitamin D binding protein, a property that is correlated with fewer calcium effects in vivo. Two mimics tested in mice showed greater induction of a VDR target gene with less elevation of serum calcium than 1,25(OH)2D3. CONCLUSIONS: These novel VDR modulators may have potential as therapeutics for cancer, leukemia and psoriasis with less calcium mobilization side effects than are associated with secosteroidal 1,25(OH)2D3 analogs.  (+info)

Lispro or regular insulin for multiple injection therapy in adolescence. Differences in free insulin and glucose levels overnight. (6/1302)

OBJECTIVE: Regular insulin given with the evening meal could contribute to the risk of nocturnal hypoglycemia in adolescents with type 1 diabetes using a multiple injection regimen. To test this hypothesis, we compared glucodynamics and free insulin levels on two separate study nights. RESEARCH DESIGN AND METHODS: A total of 14 adolescents were recruited. On both nights, identical doses of regular insulin or insulin lispro were administered 30 min or 10 min, respectively, before the evening meal, using a double-blind randomized crossover study design. Doses of NPH insulin and carbohydrate content of the evening meal and snack were kept identical. Blood samples were taken every 15 min for blood glucose and every 60 min for free insulin and ketones. RESULTS: After insulin lispro administration, glucose levels were significantly lower between the evening meal and the bedtime snack (analysis of variance [ANOVA] P = 0.02), and four hypoglycemic episodes were recorded. This corresponded to a higher (458 +/- 48 vs. 305 +/- 33 pmol/l, P = 0.02), earlier (64 +/- 4.6 vs. 103 +/- 12 min, P = 0.01), and shorter-lasting (245 +/- 21 vs. 365 +/- 39 min, P = 0.01) insulin peak in contrast to regular insulin. After the bedtime snack, glucose levels increased dramatically during the lispro night and stayed higher, up to 0300 in the morning (ANOVA P = 0.01), corresponding to lower mean insulin levels (146 +/- 20 vs. 184 +/- 27 pmol/l, P = 0.04). No differences were seen in glucose and insulin levels between 0300 and 0800. Four episodes of nocturnal hypoglycemia were documented after the bedtime snack during the regular insulin night, in contrast to one episode after insulin lispro. No differences in ketone levels were observed. CONCLUSIONS: The replacement of regular insulin with insulin lispro may reduce the risk of late hypoglycemia, but redistribution of the evening carbohydrate may be needed to ensure good metabolic control and prevent early postprandial hypoglycemia.  (+info)

A unique urinary constituent, 6-hydroxy-6-methyl-3-heptanone, is a pheromone that accelerates puberty in female mice. (7/1302)

BACKGROUND: Olfactorily mediated puberty acceleration in female mice (measured by an increase in uterine weight) has been observed since the 1960s without the active chemosignal being structurally identified. There are many controversies in the literature as to whether this male-originated pheromone is a volatile substance. We investigated the chemical nature of the urinary fractions that are responsible for the characteristic uterine weight increases. RESULTS: The active pheromone was identified as 5,5-dimethyl-2-ethyltetrahydrofuran-2-ol and/or its open-chain tautomer (6-hydroxy-6-methyl-3-heptanone). A series of cyclic vinyl ethers were isolated from chromatographically active fractions of the urine. Because these compounds did not accelerate puberty, we postulated that these ethers were degradation products of a lactol (5,5-dimethyl-2-ethyltetrahydrofuran-2-ol). The lactol was then detected directly in the mouse urine extract using a silylation agent. Synthetic 6-hydroxy-6-methyl-3-heptanone had strong biological activity, whereas its close structural analogs did not. CONCLUSIONS: The male house mouse excretes into its urine a large quantity of a volatile substance that has a unique lactol/hydroxyketone structure. This substance is capable of binding to the less volatile urinary constituents, such as proteins or peptides, and is active in puberty-acceleration bioassays. The controversies regarding the volatility of the puberty-accelerating pheromones can now be explained by considering a complex of volatile lactol/hydroxyketone and urinary proteins.  (+info)

In vivo effects of ascorbate and glutathione on the uptake of chromium, formation of chromium(V), chromium-DNA binding and 8-hydroxy-2'-deoxyguanosine in liver and kidney of osteogenic disorder shionogi rats following treatment with chromium(VI). (8/1302)

Several previous in vitro studies have indicated that ascorbate and glutathione are the major reductants of Cr(VI) in cells. In order to evaluate the in vivo effects of ascorbate and glutathione on Cr(VI)-induced carcinogenesis, Cr uptake and the formation of Cr(V), Cr-DNA adducts and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) were measured in the liver and kidney of Osteogenic Disorder Shionogi (ODS) rats that lack the ability to synthesize ascorbate. Despite a 10-fold difference in tissue ascorbate levels among different dietary ascorbate groups, the Cr(V) signal intensity, Cr uptake and total Cr-DNA binding were not affected in either organ. Treatment of ODS rats with Cr(VI) (10 mg/kg) had no substantial effect on the levels of ascorbate and glutathione in these tissues. The levels of Cr(V) and Cr-DNA binding were approximately 2-fold higher in the liver than in the kidney, although the levels of total Cr uptake were similar in both tissues. Cr uptake levels were significantly lower in the liver and kidney of ODS rats treated with high levels of ascorbate and a high dose of Cr(VI) (40 mg/kg), suggesting a detoxifying role played by plasma ascorbate. Similarly, modulation of glutathione levels by N-acetyl-L-cysteine, L-buthionine-S, R-sulfoximine or phorone in these animals by up to 2-fold had little or no consistent effect on Cr uptake, Cr-DNA binding, Cr(V) levels or 8-OH-dG formation in either organ. One possible explanation is that reduction of ascorbate and glutathione concentration to <10 and 50%, respectively, of normal in these two organs still provides threshold levels of these two reductants that are in excess of what is needed for significant reductive activation of Cr(VI). Alternatively, it is possible that ascorbate and glutathione do not play a major role in the formation of Cr(V), Cr-DNA binding or 8-OH-dG and that other cellular reductants, such as cysteine or other amino acids, might be more important reductants of Cr(VI) in vivo.  (+info)