(1/2795) Reversal of hyperlipidaemia in apolipoprotein C1 transgenic mice by adenovirus-mediated gene delivery of the low-density-lipoprotein receptor, but not by the very-low-density-lipoprotein receptor.

We have shown previously that human apolipoprotein (apo)C1 transgenic mice exhibit hyperlipidaemia, due primarily to an impaired clearance of very-low-density lipoprotein (VLDL) particles from the circulation. In the absence of at least the low-density-lipoprotein receptor (LDLR), it was shown that APOC1 overexpression in transgenic mice inhibited the hepatic uptake of VLDL via the LDLR-related protein. In the present study, we have now examined the effect of apoC1 on the binding of lipoproteins to both the VLDL receptor (VLDLR) and the LDLR. The binding specificity of the VLDLR and LDLR for apoC1-enriched lipoprotein particles was examined in vivo through adenovirus-mediated gene transfer of the VLDLR and the LDLR [giving rise to adenovirus-containing (Ad)-VLDLR and Ad-LDLR respectively] in APOC1 transgenic mice, LDLR-deficient (LDLR-/-) mice and wild-type mice. Remarkably, Ad-VLDLR treatment did not reduce hyperlipidaemia in transgenic mice overexpressing human APOC1, irrespective of both the level of transgenic expression and the presence of the LDLR, whereas Ad-VLDLR treatment did reverse hyperlipidaemia in LDLR-/- and wild-type mice. On the other hand, Ad-LDLR treatment strongly decreased plasma lipid levels in these APOC1 transgenic mice. These results suggest that apoC1 inhibits the clearance of lipoprotein particles via the VLDLR, but not via the LDLR. This hypothesis is corroborated by in vitro binding studies. Chinese hamster ovary (CHO) cells expressing the VLDLR (CHO-VLDLR) or LDLR (CHO-LDLR) bound less APOC1 transgenic VLDL than wild-type VLDL. Intriguingly, however, enrichment with apoE enhanced dose-dependently the binding of wild-type VLDL to CHO-VLDLR cells (up to 5-fold), whereas apoE did not enhance the binding of APOC1 transgenic VLDL to these cells. In contrast, for binding to CHO-LDLR cells, both wild-type and APOC1 transgenic VLDL were stimulated upon enrichment with apoE. From these studies, we conclude that apoC1 specifically inhibits the apoE-mediated binding of triacylglycerol-rich lipoprotein particles to the VLDLR, whereas apoC1-enriched lipoproteins can still bind to the LDLR. The variability in specificity of these lipoprotein receptors for apoC1-containing lipoprotein particles provides further evidence for a regulatory role of apoC1 in the delivery of lipoprotein constituents to different tissues on which these receptors are located.  (+info)

(2/2795) Suppression of atherosclerotic development in Watanabe heritable hyperlipidemic rabbits treated with an oral antiallergic drug, tranilast.

BACKGROUND: Inflammatory and immunological responses of vascular cells have been shown to play a significant role in the progression of atheromatous formation. Tranilast [N-(3,4-dimethoxycinnamoyl) anthranillic acid] inhibits release of cytokines and chemical mediators from various cells, including macrophages, leading to suppression of inflammatory and immunological responses. This study tested whether tranilast may suppress atheromatous formation in Watanabe heritable hyperlipidemic (WHHL) rabbits. METHODS AND RESULTS: WHHL rabbits (2 months old) were given either 300 mg x kg-1 x d-1 of tranilast (Tranilast, n=12) or vehicle (Control, n=13) PO for 6 months. Tranilast treatment was found to suppress the aortic area covered with plaque. Immunohistochemical analysis showed that there was no difference in the percentage of the RAM11-positive macrophage area and the frequency of CD5-positive cells (T cells) in intimal plaques between Tranilast and Control. Major histocompatibility complex (MHC) class II expression in macrophages and interleukin-2 (IL-2) receptor expression in T cells, as markers of the immunological activation in these cells, was suppressed in atheromatous plaque by tranilast treatment. Flow cytometry analysis of isolated human and rabbit peripheral blood mononuclear cells showed that an increase in expression both of MHC class II antigen on monocytes by incubation with interferon-gamma and of IL-2 receptor on T cells by IL-2 was suppressed by the combined incubation with tranilast. CONCLUSIONS: The results indicate that tranilast suppresses atherosclerotic development partly through direct inhibition of immunological activation of monocytes/macrophages and T cells in the atheromatous plaque.  (+info)

(3/2795) Hypoalbuminemia increases lysophosphatidylcholine in low-density lipoprotein of normocholesterolemic subjects.

BACKGROUND: A phospholipid, lysophosphatidylcholine (LPC), is the major determinant of the atherosclerotic properties of oxidized low-density lipoprotein (LDL). Under normal circumstances most LPC is bound to albumin. We hypothesized that lipoprotein LPC concentrations are increased in hypoalbuminemic patients with the nephrotic syndrome, irrespective of their lipid levels. To test this hypothesis, we selected nephrotic and control subjects with matched LDL cholesterol levels. METHODS: Lipoproteins and the albumin-rich lipoprotein-deficient fractions were separated by ultracentrifugation and their phospholipid composition was analyzed by thin-layer chromatography. RESULTS: Nephrotic subjects (albumin 23 +/- 2 g/liter and LDL cholesterol 3.1 +/- 0.2 mmol/liter) had a LDL LPC concentration that was increased (P < 0.05) to 66 +/- 7 vs. 35 +/- 6 micromol/liter in matched controls (albumin 42 +/- 5 g/liter and LDL cholesterol 3.1 +/- 0.2 mmol/liter). LPC in very low-density lipoprotein plus intermediate-density lipoprotein (VLDL + IDL) in these subjects was also increased to 33 +/- 7 vs. 9 +/- 2 micromol/liter in controls (P < 0.05). Conversely, LPC was decreased to 19 +/- 4 micromol/liter in the albumin-containing fraction of these hypoalbuminemic patients, as compared to 46 +/- 10 micromol/liter in the controls (P < 0.05). LPC was also low (14 +/- 4 micromol/liter) in the albumin-containing fraction of hypoalbuminemic, hypocholesterolemic patients with nonrenal diseases. In hyperlipidemic nephrotic subjects (albumin 21 +/- 2 g/liter and LDL cholesterol 5.7 +/- 0.5 mmol/liter) the LPC levels in LDL and VLDL + IDL were further increased, to 95 +/- 20 and 56 +/- 23 micromol/liter, respectively (P < 0.05). CONCLUSION: These findings suggest that in the presence of hypoalbuminemia in combination with proteinuria, LPC shifts from albumin to VLDL, IDL and LDL. This effect is independent of hyperlipidemia. Increased LPC in lipoproteins may be an important factor in the disproportionate increase in cardiovascular disease in nephrotic patients with hypoalbuminemia.  (+info)

(4/2795) Expression of stromelysin-3 in atherosclerotic lesions: regulation via CD40-CD40 ligand signaling in vitro and in vivo.

Stromelysin-3 is an unusual matrix metalloproteinase, being released in the active rather than zymogen form and having a distinct substrate specificity, targeting serine proteinase inhibitors (serpins), which regulate cellular functions involved in atherosclerosis. We report here that human atherosclerotic plaques (n = 7) express stromelysin-3 in situ, whereas fatty streaks (n = 5) and normal arterial specimens (n = 5) contain little or no stromelysin-3. Stromelysin-3 mRNA and protein colocalized with endothelial cells, smooth muscle cells, and macrophages within the lesion. In vitro, usual inducers of matrix metalloproteinases such as interleukin-1, interferon-gamma, or tumor necrosis factor alpha did not augment stromelysin-3 in vascular wall cells. However, T cell-derived as well as recombinant CD40 ligand (CD40L, CD154), an inflammatory mediator recently localized in atheroma, induced de novo synthesis of stromelysin-3. In addition, stromelysin-3 mRNA and protein colocalized with CD40L and CD40 within atheroma. In accordance with the in situ and in vitro data obtained with human material, interruption of the CD40-CD40L signaling pathway in low density lipoprotein receptor-deficient hyperlipidemic mice substantially decreased expression of the enzyme within atherosclerotic plaques. These observations establish the expression of the unusual matrix metalloproteinase stromelysin-3 in human atherosclerotic lesions and implicate CD40-CD40L signaling in its regulation, thus providing a possible new pathway that triggers complications within atherosclerotic lesions.  (+info)

(5/2795) Apolipoprotein A-I of hyperlipidemia atherosclerosis prone (LAP) quail: cDNA sequence and tissue expression.

Apolipoprotein A-I (apo A-I) has an important role in the transport of cholesterol. This study describes the complete nucleotide and deduced amino acid sequence for apo A-I of LAP quail. A full length apo A-I cDNA clone for hyperlipidemia atherosclerosis prone (LAP) quail was isolated from a lambda gt10 liver cDNA library. The DNA sequence of LAP apo A-I cDNA was similar to that of normal Japanese quail. The deduced amino acid sequence of LAP apo A-I was hence identical to that of normal Japanese quail. LAP apo A-I mRNA is about 1.4 kilobases in length and expressed in a variety of tissues including small intestine, liver, lung, breast muscle, testis, and heart. Although the tissue distribution of apo A-I was similar between strains, LAP quail expressed more apo A-I mRNA than normal Japanese quail in all tissues examined. This tendency was pronounced with the small intestine. Although the concentration of serum apo A-I did not correlate with the tissue expression of mRNA, the observation may suggest that the increased apo A-I expression in LAP strain had some relevance to the susceptibility of this strain to the experimental atherosclerosis.  (+info)

(6/2795) Mass spectral study of polymorphism of the apolipoproteins of very low density lipoprotein.

New isoforms of apolipoprotein (apo)C-I and apoC-III have been detected in delipidated fractions from very low density lipoprotein (VLDL) using matrix-assisted laser desorption (MALDI) and electrospray ionization (ESI) mass spectrometry (MS). The cleavage sites of truncated apoC-III isoforms have also been identified. The VLDL fractions were isolated by fixed-angle single-spin ultracentrifugation using a self-generating sucrose density gradient and delipidated using a newly developed C18 solid phase extraction protocol. Fifteen apoC isoforms and apoE were identified in the MALDI spectra and the existence of the more abundant species was verified by ESI-MS. The relative intensities of the apoCs are closely correlated in three normolipidemic subjects. A fourth subject with type V hyperlipidemia exhibited an elevated apoC-III level and a suppressed level of the newly discovered truncated apoC-I isoform. ApoC-II was found to be particularly sensitive to in vitro oxidation. The dynamic range and specificity of the MALDI assay shows that the complete apoC isoform profile and apoE phenotype can be obtained in a single measurement from the delipidated VLDL fraction.  (+info)

(7/2795) Age-related changes in blood coagulation and fibrinolysis in mice fed on a high-cholesterol diet.

To investigate the pathogenesis of hyperlipidemia-induced atherosclerosis, we examined age-dependent changes in platelet activity, blood coagulation and fibrinolysis in susceptibility to a high cholesterol diet (HCD) feeding in male ICR mice. Pretreatment of platelet-rich-plasma from HCD feeding mice for 3 days with epinephrine (300 microM) resulted in a marked enhancement of adenosine 5'-diphosphate (ADP: 0.1 microM) or collagen (0.7 microgram/ml)-stimulated aggregation compared with the same in control mice. Yohimbine as alpha 2-adrenergic blocker antagonized these aggregations in a dose-dependent manner. A significant increase in plasma total cholesterol and VLDL (very low-density lipoprotein)-LDL (low-density lipoprotein)-cholesterol and the liver/body weight ratio was observed in mice fed on HCD for 3 months (3-month HCD mice). In the early phase of this experiment, a significant increase in fibrinogen was observed. In the middle phase, increases in the activity of antithrombin III (ATIII) and alpha 2-plasmin inhibitor (alpha 2-Pl) followed. Plasminogen content gradually decreased in both normal diet and HCD mice throughout the experiment. The activity of plasminogen activator inhibitor (PAI) decreased in 3-month HCD mice. Morphological observation of the aortic arch from 3-month HCD mice revealed apparent atheromatous plaques not seen in control mice. These results suggest that 3-month HCD mice can be a convenient hyperlipidemia-induced atherosclerotic model and the changes in platelet activity, coagulation and fibrinolysis in the early phase may be a cause of pathologic changes in this model.  (+info)

(8/2795) Health aspects of partially defatted flaxseed, including effects on serum lipids, oxidative measures, and ex vivo androgen and progestin activity: a controlled crossover trial.

BACKGROUND: Currently there is considerable interest in the potential health benefits of oil seeds, such as soy and flaxseed, especially in relation to cardiovascular disease and cancer. OBJECTIVE: We therefore evaluated health aspects of partially defatted flaxseed in relation to serum lipids, indicators of oxidative stress, and ex vivo sex hormone activities. DESIGN: Twenty-nine hyperlipidemic subjects (22 men and 7 postmenopausal women) completed two 3-wk treatment periods in a randomized, crossover trial. Subjects were given muffins that contributed approximately 20 g fiber/d from either flaxseed (approximately 50 g partially defatted flaxseed/d) or wheat bran (control) while they consumed self-selected National Cholesterol Education Program Step II diets. Both muffins had similar macronutrient profiles. Treatment phases were separated by > or = 2 wk. RESULTS: Partially defatted flaxseed reduced total cholesterol (4.6+/-1.2%; P = 0.001), LDL cholesterol (7.6+/-1.8%; P < 0.001), apolipoprotein B (5.4+/-1.4%; P = 0.001), and apolipoprotein A-I (5.8+/-1.9%; P = 0.005), but had no effect on serum lipoprotein ratios at week 3 compared with the control. There were no significant effects on serum HDL cholesterol, serum protein carbonyl content, or ex vivo androgen or progestin activity after either treatment. Unexpectedly, serum protein thiol groups were significantly lower (10.8+/-3.6%; P = 0.007) at week 3 after the flaxseed treatment than after the control, suggesting increased oxidation. CONCLUSIONS: These data indicate that partially defatted flaxseed is effective in lowering LDL cholesterol. No effects on lipoprotein ratios, ex vivo serum androgen or progestin activity, or protein carbonyl content were observed. The significance of increased oxidation of protein thiol groups with flaxseed consumption requires further investigation.  (+info)