(1/1799) Fusariotoxicosis from barley in British Columbia. I. Natural occurrence and diagnosis.

Clinical sickness was observed in domestic ducks, geese, horses and swine during October 1973. All species showed upper alimentary distress with mortalities occurring in the geese. Barley derived from a common source had been fed. Examination of the barley revealed invasion by Fusarium spp and detection of a high level of dermatitic fusariotoxins.  (+info)

(2/1799) Urethrorectal fistula in a horse.

Anomalies of the urethra are uncommon. Urethrorectal fistula in horses has only been reported in foals and only in conjunction with other congenital anomalies. This report describes the diagnosis, surgical management, and possible etiologies of a unique case of urethrorectal fistula in a mature gelding.  (+info)

(3/1799) Mediators of anaphylaxis but not activated neutrophils augment cholinergic responses of equine small airways.

Neutrophilic inflammation in small airways (SA) and bronchospasm mediated via muscarinic receptors are features of chronic obstructive pulmonary disease in horses (COPD). Histamine, serotonin, and leukotrienes (LTs) are reported to be involved in the exacerbation of COPD, and currently, histamine has been shown to increase tension response to electrical field simulation (EFS) in equine SA. We tested the effects of these mediators and the effects of activated neutrophils on the cholinergic responses in SA. Histamine, serotonin, and LTD4 had a synergistic effect on EFS responses and only an additive effect on the tension response to exogenous ACh or methacholine. Atropine and TTX entirely eliminated the EFS-induced tension response in the presence of all three inflammatory mediators, indicating that augmentation of the EFS response applies only to the endogenous cholinergic response. Neutrophils isolated from control and COPD-affected horses were activated by zymosan, producing 18.1 +/- 2.3 and 25.0 +/- 2.3 nmol superoxide. 10(6) cells-1. 30 min-1, respectively. However, in contrast to the profound effect of mediators, incubation of SA for over 1 h in a suspension of up to 30 x 10(6) zymosan-treated neutrophils/ml did not significantly affect EFS responses of SA isolated from either control or COPD-affected horses. We conclude that in equine SA 1) the endogenous cholinergic responses are subject to strong facilitation by inflammatory mediators; 2) activated neutrophils do not affect cholinergic responses in SA; and 3) in acute bouts of equine COPD, histamine, LTD4, and serotonin (mediators primarily associated with type I allergic reaction) rather than mediators derived from neutrophils most likely contribute to increased cholinergic airway tone.  (+info)

(4/1799) Ballistic shock wave lithotripsy in an 18-year-old thoroughbred gelding.

Prolonged postoperative recuperation time and restricted exercise were circumvented by using ballistic shock wave lithotripsy to break up an 8-cm diameter vesical calculus and by flushing out the sand-like residue under epidural anesthesia with the horse standing. Recovery was uneventful.  (+info)

(5/1799) Amylopectinosis in fetal and neonatal Quarter Horses.

Three Quarter Horses, a stillborn filly (horse No. 1), a female fetus aborted at approximately 6 months of gestation (horse No. 2), and a 1-month-old colt that had been weak at birth (horse No. 3), had myopathy characterized histologically by large spherical or ovoid inclusions in skeletal and cardiac myofibers. Smaller inclusions were also found in brain and spinal cord and in some cells of all other tissues examined. These inclusions were basophilic, red-purple after staining with periodic acid-Schiff (both before and after digestion with diastase), and moderately dark blue after staining with toluidine blue. The inclusions did not react when stained with Congo red. Staining with iodine ranged from pale blue to black. Their ultrastructural appearance varied from amorphous to somewhat filamentous. On the basis of staining characteristics and diastase resistance, we concluded that these inclusions contained amylopectin. A distinctly different kind of inclusion material was also present in skeletal muscle and tongue of horse Nos. 1 and 3. These inclusions were crystalline with a sharply defined ultrastructural periodicity. The crystals were eosinophilic and very dark blue when stained with toluidine blue but did not stain with iodine. Crystals sometimes occurred freely within the myofibers but more often were encased by deposits of amylopectin. This combination of histologic and ultrastructural features characterizes a previously unreported storage disease in fetal and neonatal Quarter Horses, with findings similar to those of glycogen storage disease type IV. We speculate that a severe inherited loss of glycogen brancher enzyme activity may be responsible for these findings. The relation of amylopectinosis to the death of the foals is unknown.  (+info)

(6/1799) Genetic divergence with emergence of novel phenotypic variants of equine arteritis virus during persistent infection of stallions.

The persistently infected carrier stallion is the critical natural reservoir of equine arteritis virus (EAV), as venereal infection of mares frequently occurs after breeding to such stallions. Two Thoroughbred stallions that were infected during the 1984 outbreak of equine viral arteritis in central Kentucky subsequently became long-term EAV carriers. EAV genomes amplified from the semen of these two stallions were compared by sequence analysis of the six 3' open reading frames (ORFs 2 through 7), which encode the four known structural proteins and two uncharacterized glycoproteins. The major variants of the EAV population that sequentially arose within the reproductive tract of each carrier stallion varied by approximately 1% per year, and the heterogeneity of the viral quasispecies increased during the course of long-term persistent infection. The various ORFs of the dominant EAV variants evolved independently, and there was apparently strong selective pressure on the uncharacterized GP3 protein during persistent infection. Amino acid changes also occurred in the V1 variable region of the GL protein. This region has been previously identified as a crucial neutralization domain, and selective pressures exerted on the V1 region during persistent EAV infection led to the emergence of virus variants with distinct neutralization properties. Thus, evolution of the EAV quasispecies that occurs during persistent infection of the stallion clearly can influence viral phenotypic properties such as neutralization and perhaps virulence.  (+info)

(7/1799) Genetic and phenotypic changes accompanying the emergence of epizootic subtype IC Venezuelan equine encephalitis viruses from an enzootic subtype ID progenitor.

Recent studies have indicated that epizootic Venezuelan equine encephalitis (VEE) viruses can evolve from enzootic, subtype ID strains that circulate continuously in lowland tropical forests (A. M. Powers, M. S. Oberste, A. C. Brault, R. Rico-Hesse, S. M. Schmura, J. F. Smith, W. Kang, W. P. Sweeney, and S. C. Weaver, J. Virol. 71:6697-6705, 1997). To identify mutations associated with the phenotypic changes leading to epizootics, we sequenced the entire genomes of two subtype IC epizootic VEE virus strains isolated during a 1992-1993 Venezuelan outbreak and four sympatric, subtype ID enzootic strains closely related to the predicted epizootic progenitor. Analysis by maximum-parsimony phylogenetic methods revealed 25 nucleotide differences which were predicted to have accompanied the 1992 epizootic emergence; 7 of these encoded amino acid changes in the nsP1, nsP3, capsid, and E2 envelope glycoprotein, and 2 were mutations in the 3' untranslated genome region. Comparisons with the genomic sequences of IAB and other IC epizootic VEE virus strains revealed that only one of the seven amino acid changes associated with the 1992 emergence, a threonine-to-methionine change at position 360 of the nsP3 protein, accompanied another VEE virus emergence event. Two changes in the E2 envelope glycoprotein region believed to include the major antigenic determinants, both involving replacement of uncharged residues with arginine, are also candidates for epizootic determinants.  (+info)

(8/1799) SFS, a novel fibronectin-binding protein from Streptococcus equi, inhibits the binding between fibronectin and collagen.

The obligate parasitic bacterium Streptococcus equi subsp. equi is the causative agent of strangles, a serious disease of the upper respiratory tract in horses. In this study we have, using shotgun phage display, cloned from S. equi subsp. equi and characterized a gene, called sfs, encoding a protein termed SFS, representing a new type of fibronectin (Fn)-binding protein. The sfs gene was found to be present in all 50 isolates of S. equi subsp. equi tested and in 41 of 48 S. equi subsp. zooepidemicus isolates tested. The sfs gene is down-regulated during growth in vitro compared to fnz, a previously characterized gene encoding an Fn-binding protein from S. equi subsp. zooepidemicus. Sequence comparisons revealed no similarities to previously characterized Fn-binding proteins, but high scores were obtained against collagen. Besides similarity due to the high content of glycine, serine, and proline residues present in both proteins, there was a nine-residue motif present both in collagen and in the Fn-binding domain of SFS. By searching the Oklahoma S. pyogenes database, we found that this motif is also present in a potential cell surface protein from S. pyogenes. Protein SFS was found to inhibit the binding between Fn and collagen in a concentration-dependent way.  (+info)