Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. (1/4254)

Activation of telomerase is one of the rate-limiting steps in human cell immortalization and carcinogenesis Human telomerase is composed of at least two protein subunits and an RNA component. Regulation of expression of the catalytic subunit, human telomerase reverse transcriptase (hTERT), is suggested as the major determinant of the enzymatic activity. We report here the cloning and characterization of the 5'-regulatory region of the hTERT gene. The highly GC-rich content of the 5' end of the hTERT cDNA spans to the 5'-flanking region and intron 1, making a CpG island. A 1.7-kb DNA fragment encompassing the hTERT gene promoter was placed upstream of the luciferase reporter gene and transiently transfected into human cell lines of fibroblastic and epithelial origins that differed in their expression of the endogenous hTERT gene. Endogenous hTERT-expressing cells, but not nonexpressing cells, showed high levels of luciferase activity, suggesting that the regulation of hTERT gene expression occurs mainly at the transcriptional level. Additional luciferase assays using a series of constructs containing unidirectionally deleted fragments revealed that a 59-bp region (-208 to -150) is required for the maximal promoter activity. The region contains a potential Myc oncoprotein binding site (E-box), and cotransfection of a c-myc expression plasmid markedly enhanced the promoter activity, suggesting a role of the Myc protein in telomerase activation. Identification of the regulatory regions of the hTERT promoter sequence will be essential in understanding the molecular mechanisms of positive and negative regulation of telomerase.  (+info)

Core promoter mutations and genotypes in relation to viral replication and liver damage in East Asian hepatitis B virus carriers. (2/4254)

Virus load and liver damage, as measured by quantitative polymerase chain reaction and histology activity index, were related to genotype and core promoter mutations in 43 chronic hepatitis B virus (HBV) carriers of East Asian origin. T-1762 mutants were more frequent in genotype C strains and were associated with more inflammation (P=.0036) and fibrosis (P=.0088) of the liver but not with hepatitis B e antigen (HBeAg) status or virus load. Conversely, precore mutations were associated with less liver inflammation (P=. 08), which was linked to HBeAg negativity and lower viral replication. Carriers with genotype C were more often HBeAg positive (P=.03) with precore wild type strains and more-severe liver inflammation (P=.009) than were those with genotype B. These findings suggest that pathogenic differences between genotypes may exist and that the T-1762 mutation may be useful as a marker for progressive liver damage but seem to contradict that down-regulation of HBeAg production is the major effect of this mutation.  (+info)

Transcriptional repression of human hepatitis B virus genes by a bZIP family member, E4BP4. (3/4254)

Box alpha is an essential element of both the upstream regulatory sequence of the core promoter and the second enhancer, which positively regulate the transcription of human hepatitis B virus (HBV) genes. In this paper, we describe the cloning and characterization of a box alpha binding protein, E4BP4. E4BP4 is a bZIP type of transcription factor. Overexpression of E4BP4 represses the stimulating activity of box alpha in the upstream regulatory sequence of the core promoter and the second enhancer in differentiated human hepatoma cell lines. E4BP4 can also suppress the transcription of HBV genes and the production of HBV virions in a transient-transfection system that mimics the viral infection in vivo. Expression of an E4BP4 antisense transcript can, instead, elevate the transcription of the core promoter. A low abundance of E4BP4 protein and mRNA in differentiated human hepatoma cell lines is detected, and E4BP4 is not a major component of box alpha binding proteins in untransfected differentiated human hepatoma cell lines. C/EBPalpha and C/EBPbeta, in contrast, are major components of the box alpha binding activity present in nuclear extracts. E4BP4 has a stronger binding affinity towards box alpha than the endogenous box alpha binding activity present in nuclear extracts. Structure and function analysis of E4BP4 reveals that DNA binding activity is sufficient to confer the negative regulatory function of E4BP4. These results indicate that binding site occlusion is the mechanism whereby E4BP4 suppresses transcription in HBV.  (+info)

Mutations in the carboxyl-terminal domain of the small hepatitis B virus envelope protein impair the assembly of hepatitis delta virus particles. (4/4254)

The carboxyl-terminal domain of the small (S) envelope protein of hepatitis B virus was subjected to mutagenesis to identify sequences important for the envelopment of the nucleocapsid during morphogenesis of hepatitis delta virus (HDV) virions. The mutations consisted of carboxyl-terminal truncations of 4 to 64 amino acid residues and small combined deletions and insertions spanning the entire hydrophobic domain between residues 163 and 224. Truncation of as few as 14 residues partially inhibited glycosylation and secretion of S and prevented assembly or stability of HDV virions. Short internal combined deletions and insertions were tolerated for secretion of subviral particles with the exceptions of those affecting residues 164 to 173 and 219 to 223. However, mutants competent for subviral particle secretion had a reduced capacity for HDV assembly compared to that of the wild type. One exception was a mutant carrying a deletion of residues 214 to 218, which exhibited a twofold increase in HDV assembly (or stability), whereas deletions of residues 179 to 183, 194 to 198, and 199 to 203 were the most inhibitory. Substitutions of single amino acids between residues 194 and 198 demonstrated that HDV assembly deficiency could be assigned to the replacement of the tryptophan residue at position 196. We concluded that assembly of stable HDV particles requires a specific function of the carboxyl terminus of S which is mediated at least in part by Trp-196.  (+info)

Intronless mRNA transport elements may affect multiple steps of pre-mRNA processing. (5/4254)

We have reported recently that a small element within the mouse histone H2a-coding region permits efficient cytoplasmic accumulation of intronless beta-globin cDNA transcripts. This sequence lowers the levels of spliced products from intron-containing constructs and can functionally replace Rev and the Rev-responsive element (RRE) in the nuclear export of unspliced HIV-1-related mRNAs. In work reported here, we further investigate the molecular mechanisms by which this element might work. We demonstrate here through both in vivo and in vitro assays that, in addition to promoting mRNA nuclear export, this element acts as a polyadenylation enhancer and as a potent inhibitor of splicing. Surprisingly, two other described intronless mRNA transport elements (from the herpes simplex virus thymidine kinase gene and hepatitis B virus) appear to function in a similar manner. These findings prompt us to suggest that a general feature of intronless mRNA transport elements might be a collection of phenotypes, including the inhibition of splicing and the enhancement of both polyadenylation and mRNA export.  (+info)

Functional analysis of mutations conferring lamivudine resistance on hepatitis B virus. (6/4254)

Two patterns of mutation are commonly observed in the polymerase gene of lamivudine [(-)2'-deoxy-3'-thiacytidine]-resistant hepatitis B virus (HBV). The M539I substitution in the conserved YMDD motif occurs independently of other changes, whereas the M539V substitution is associated with an additional upstream change (L515M). These mutations were introduced into a common background and their effects on HBV DNA replication and lamivudine resistance studied. The L515M and M539V mutations provided only partial resistance while the M539I mutation conferred a high degree of lamivudine resistance. The combination of the L515M and M539V mutations gave an intermediate level of replication competence, compared with either mutation alone, and increased resistance to lamivudine. This probably accounts for these two mutations always being observed together. The M539I mutation reduced replication competence.  (+info)

A cellular protein which binds hepatitis B virus but not hepatitis B surface antigen. (7/4254)

The envelope of hepatitis B virus (HBV) consists of three related proteins known as the large (L), middle (M) and small (S) hepatitis B surface antigens (HBsAg). L-HBsAg has a 108-119 amino acid extension at the N terminus compared with M-HBsAg and contains the preS1 sequence of the HBV envelope. Previous research has identified this region as the likely virus attachment protein which is thought to interact with the cellular receptor for the virus. However, as the receptor has still not been identified unequivocally, we used the preS1 region of L-HBsAg to screen a human liver cDNA library by the yeast two-hybrid system. Several positive clones were isolated which encoded cellular proteins that interacted with the HBV preS1 protein. The specificity was examined in an independent manner in experiments in which baculovirus-derived glutathione S-transferase (GST)-preS1 was incubated with 35S-labelled protein expressed by in vitro translation from the positive clones. The intensity of the interactions using this alternative approach mirrored those observed in the yeast two-hybrid system and two proteins (an unidentified protein and a mitochondrial protein) were selected for further study. The specificity of the binding reaction between the preS1 protein and these two proteins was further confirmed in a competition assay; HBV purified from serum, but not purified HBsAg, was able to compete with preS1 and thus block GST-preS1 binding to the unidentified protein but not to the mitochondrial protein. The unidentified protein was then expressed as a fusion protein with GST and this was able to bind HBV virions in a direct manner.  (+info)

Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. (8/4254)

Although many viruses replicate in the nucleus, little is known about the processes involved in the nuclear import of viral genomes. We show here that in vitro generated core particles of human hepatitis B virus bind to nuclear pore complexes (NPCs) in digitonin-permeabilized mammalian cells. This only occurred if the cores contained phosphorylated core proteins. Binding was inhibited by wheat germ agglutinin, by antinuclear pore complex antibodies, and by peptides corresponding either to classical nuclear localization signals (NLS) or to COOH-terminal sequences of the core protein. Binding was dependent on the nuclear transport factors importins (karyopherins) alpha and beta. The results suggested that phosphorylation induces exposure of NLS in the COOH-terminal portion of the core protein that allows core binding to the NPCs by the importin- (karyopherin-) mediated pathway. Thus, phosphorylation of the core protein emerged as an important step in the viral replication cycle necessary for transport of the viral genome to the nucleus.  (+info)