Human topoisomerase I promotes initiation of simian virus 40 DNA replication in vitro. (1/17470)

Addition of purified human topoisomerase I (topo I) to simian virus 40 T antigen-driven in vitro DNA replication reactions performed with topo I-deficient extracts results in a greater than 10-fold stimulation of completed molecules as well as a more than 3-fold enhancement of overall DNA replication. To further characterize this stimulation, we first demonstrate that bovine topo I but not Escherichia coli topo I can also enhance DNA replication. By using several human topo I mutants, we show that a catalytically active form of topo I is required. To delineate whether topo I influences the initiation or the elongation step of replication, we performed delayed pulse, pulse-chase, and delayed pulse-chase experiments. The results illustrate that topo I cannot promote the completion of partially replicated molecules but is needed from the beginning of the reaction to initiate replication. Competitive inhibition experiments with the topo I binding T antigen fragment 1-246T and a catalytically inactive topo I mutant suggest that part of topo I's stimulation of replication is mediated through a direct interaction with T antigen. Collectively, our data indicate that topo I enhances the synthesis of fully replicated DNA molecules by forming essential interactions with T antigen and stimulating initiation.  (+info)

The 3'-->5' exonucleases of DNA polymerases delta and epsilon and the 5'-->3' exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. (2/17470)

Replication fidelity is controlled by DNA polymerase proofreading and postreplication mismatch repair. We have genetically characterized the roles of the 5'-->3' Exo1 and the 3'-->5' DNA polymerase exonucleases in mismatch repair in the yeast Saccharomyces cerevisiae by using various genetic backgrounds and highly sensitive mutation detection systems that are based on long and short homonucleotide runs. Genetic interactions were examined among DNA polymerase epsilon (pol2-4) and delta (pol3-01) mutants defective in 3'-->5' proofreading exonuclease, mutants defective in the 5'-->3' exonuclease Exo1, and mismatch repair mutants (msh2, msh3, or msh6). These three exonucleases play an important role in mutation avoidance. Surprisingly, the mutation rate in an exo1 pol3-01 mutant was comparable to that in an msh2 pol3-01 mutant, suggesting that they participate directly in postreplication mismatch repair as well as in other DNA metabolic processes.  (+info)

Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. (3/17470)

Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB.  (+info)

Tissue factor pathway inhibitor-2 is a novel mitogen for vascular smooth muscle cells. (4/17470)

A mitogen for growth-arrested cultured bovine aortic smooth muscle cells was purified to homogeneity from the supernatant of cultured human umbilical vein endothelial cells by heparin affinity chromatography and reverse-phase high performance liquid chromatography. This mitogen was revealed to be tissue factor pathway inhibitor-2 (TFPI-2), which is a Kunitz-type serine protease inhibitor. TFPI-2 was expressed in baby hamster kidney cells using a mammalian expression vector. Recombinant TFPI-2 (rTFPI-2) stimulated DNA synthesis and cell proliferation in a dose-dependent manner (1-500 nM). rTFPI-2 activated mitogen-activated protein kinase (MAPK) activity and stimulated early proto-oncogene c-fos mRNA expression in smooth muscle cells. MAPK, c-fos expression and the mitogenic activity were inhibited by a specific inhibitor of MAPK kinase, PD098059. Thus, the mitogenic function of rTFPI-2 is considered to be mediated through MAPK pathway. TFPI has been reported to exhibit antiproliferative action after vascular smooth muscle injury in addition to the ability to inhibit activation of the extrinsic coagulation cascade. However, structurally similar TFPI-2 was found to have a mitogenic activity for the smooth muscle cell.  (+info)

Regulation of the start of DNA replication in Schizosaccharomyces pombe. (5/17470)

Cells of Schizosaccharomyces pombe were grown in minimal medium with different nitrogen sources under steady-state conditions, with doubling times ranging from 2.5 to 14 hours. Flow cytometry and fluorescence microscopy confirmed earlier findings that at rapid growth rates, the G1 phase was short and cell separation occurred at the end of S phase. For some nitrogen sources, the growth rate was greatly decreased, the G1 phase occupied 30-50% of the cell cycle, and cell separation occurred in early G1. In contrast, other nitrogen sources supported low growth rates without any significant increase in G1 duration. The method described allows manipulation of the length of G1 and the relative cell cycle position of S phase in wild-type cells. Cell mass was measured by flow cytometry as scattered light and as protein-associated fluorescence. The extensions of G1 were not related to cell mass at entry into S phase. Our data do not support the hypothesis that the cells must reach a certain fixed, critical mass before entry into S. We suggest that cell mass at the G1/S transition point is variable and determined by a set of molecular parameters. In the present experiments, these parameters were influenced by the different nitrogen sources in a way that was independent of the actual growth rate.  (+info)

Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase. (6/17470)

The replication initiator protein RepD encoded by the Staphylococcus chloramphenicol resistance plasmid pC221 stimulates the helicase activity of the Bacillus stearothermophilus PcrA DNA helicase in vitro. This stimulatory effect seems to be specific for PcrA and differs from the stimulatory effect of the Escherichia coli ribosomal protein L3. Whereas L3 stimulates the PcrA helicase activity by promoting co-operative PcrA binding onto its DNA substrate, RepD stimulates the PcrA helicase activity by increasing the processivity of the enzyme and enables PcrA to displace DNA from a nicked substrate. The implication of these results is that PcrA is the helicase recruited into the replisome by RepD during rolling circle replication of plasmids of the pT181 family.  (+info)

SOS and UVM pathways have lesion-specific additive and competing effects on mutation fixation at replication-blocking DNA lesions. (7/17470)

Escherichia coli cells have multiple mutagenic pathways that are induced in response to environmental and physiological stimuli. Unlike the well-investigated classical SOS response, little is known about newly recognized pathways such as the UVM (UV modulation of mutagenesis) response. In this study, we compared the contributions of the SOS and UVM pathways on mutation fixation at two representative noninstructive DNA lesions: 3,N4-ethenocytosine (epsilonC) and abasic (AP) sites. Because both SOS and UVM responses are induced by DNA damage, and defined UVM-defective E. coli strains are not yet available, we first constructed strains in which expression of the SOS mutagenesis proteins UmuD' and UmuC (and also RecA in some cases) is uncoupled from DNA damage by being placed under the control of a heterologous lac-derived promoter. M13 single-stranded viral DNA bearing site-specific lesions was transfected into cells induced for the SOS or UVM pathway. Survival effects were determined from transfection efficiency, and mutation fixation at the lesion was analyzed by a quantitative multiplex sequence analysis procedure. Our results suggest that induction of the SOS pathway can independently elevate mutagenesis at both lesions, whereas the UVM pathway significantly elevates mutagenesis at epsilonC in an SOS-independent fashion and at AP sites in an SOS-dependent fashion. Although mutagenesis at epsilonC appears to be elevated by the induction of either the SOS or the UVM pathway, the mutational specificity profiles for epsilonC under SOS and UVM pathways are distinct. Interestingly, when both pathways are active, the UVM effect appears to predominate over the SOS effect on mutagenesis at epsilonC, but the total mutation frequency is significantly increased over that observed when each pathway is individually induced. These observations suggest that the UVM response affects mutagenesis not only at class 2 noninstructive lesions (epsilonC) but also at classical SOS-dependent (class 1) lesions such as AP sites. Our results add new layers of complexity to inducible mutagenic phenomena: DNA damage activates multiple pathways that have lesion-specific additive as well as suppressive effects on mutation fixation, and some of these pathways are not directly regulated by the SOS genetic network.  (+info)

Chromatin structure: a property of the higher structures of chromatin and in the time course of its formation during chromatin replication. (8/17470)

The action of a number of enzymes and metals on one nuclear preparation were interpreted in terms of the existence of a fragile but highly DNAase-I resistant feature of chromatin superstructure. The generation of this DNAase-I resistance feature of chromatin was then followed during normal DNA synthesis in the regenerating rat liver by following the disappearance of a transitory DNAase-I susceptible state. This transitory, DNAase-I susceptible state appears to be extremely similar to the post-synthetic, DNAase-I susceptible state that has been described in He La32.  (+info)