The role of oocyte transcription, the 5'UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. (1/2012)

The establishment of the major body axes of the Drosophila egg and future embryo requires strict regulation of gurken mRNA and protein localization. Here, we show that grk mRNA and protein localization is dependent on synthesis of grk transcripts in the oocyte nucleus and on RNA localization elements in the 5' portion of the transcript. We also show that gurken mRNA and protein localization is dependent on region-specific translation of gurken transcripts and identify K10 as a probable negative regulator of gurken translation.  (+info)

Perturbation of mammalian cell division. III. The topography and kinetics of extrusion subdivision. (2/2012)

If mitotic-arrested, cold-stored HeLa cells are incubated at 37 degrees C a proportion of the population divides by an aberrant process which we have called subdivision by extrusion. This process has been studied by time-lapse photography and shown to differ from normal cleavage in several respects. The cell surface becomes more generally mobile and, instead of producing the precisely localized furrowing activity of cytokinesis, gives rise to multiple surface protrusions. These protrusions enlarge at the expense of the parent cell and develop into a cluster of small daughter cells (mini segregants). The surface structure of the cell, as seen by scanning electron microscopy, also changes; the microvilli characteristic of interphase, metaphase and cleaving HeLa cells are lost during extrusion and the cell surface becomes smooth. Extrusion activity is much more variable than division by cleavage in terms of both topography and kinetics, and in general takes longer to complete. Some cells in the cold-treated populations divide by mixtures of cleavage and extrusion or by cleavage alone. The relative numbers of cells dividing in different ways vary with the conditions of pretreatment and incubation of the mitotic cells. The greater the perturbation (e.g. longer cold storage), the greater the proportion of extruding rather than cleaving cells. Human diploid cells can also be induced to subdivide by extrusion. Possible mechanisms underlying the different types of division activity are discussed.  (+info)

Analysis of the stimulation-inhibition paradox exhibited by lymphocytes exposed to concanavalin A. (3/2012)

High doses of Concanavalin A (Con A), which normally inhibit T-lymphocyte stimulation as measured by increases in DNA synthesis, cause these lymphocytes to become committed to mitogenesis while also generating a dominant but reversible negative growth signal. The observed response to the stimulatory signal as measured by the rate of commitment to enter the S phase (i.e., the rate at which the stimulation becomes lectin independent) increases with lectin concentration even in the inhibitory range. The generation of this positive signal is prevented by treating the cells with colchicine. Cells that have become committed but are also simultaneously blocked from entering the S phase by the high doses of Con A can begin synthesizing DNA if the lectin is released by adding a competitive inhibitor of binding. Experiments done in agarose cultures in which lymphocytes are kept from contact with each other suggest that the reversible inhibitory signal is mediated by structures in the individual cells rather than as a result of agglutination. Continuously dividing cells of the lymphoid line P388 are also individually and reversibly inhibited by Con A. These findings are considered in terms of the relation of the inhibitory signal to the microtubular components of cell surface modulating assemblies made up of submembranous arrays of microtubules, microfilaments, and associated proteins.  (+info)

Pseudogout attack associated with chronic thyroiditis and Sjogren's syndrome. (4/2012)

A 66-year-old woman, diagnosed with chronic thyroiditis at age 63, presented with anorexia and fatigue. Therapy for the chronic thyroiditis consisted of levothyroxine sodium (100 microg/day). Her symptoms were attributed to the insufficient supply of levothyroxine sodium. Following a dosage increase to 150 microg/day, she suffered from an acute attack of pseudogout. Clinical features were complicated by Sjogren's syndrome, which appeared after treatment onset. Pseudogout was effectively treated by colchicine after administration of diclofenac sodium failed to alleviate the symptoms. Pseudogout is a recognized complication of thyroid replacement therapy, but association with Sjogren's syndrome has not been previously reported.  (+info)

Familial Mediterranean fever--renal involvement by diseases other than amyloid. (5/2012)

BACKGROUND: In patients with familial Mediterranean fever (FMF) renal involvement is usually in the form of AA amyloidosis. There is increasing evidence that renal involvement may be due to diseases other than amyloid as well. METHODS: Amongst 302 children with FMF we observed and followed 28 with typical clinical and laboratory features of vasculitis. The diagnosis of FMF was established according to the Tel Hashomer criteria. RESULTS: Polyarteritis nodosa, protracted febrile attacks and Henoch-Schonlein purpura were diagnosed in 4, 13, and 11 patients, respectively. The presentation was often difficult to distinguish from FMF attacks, but protracted febrile attacks lasting several weeks, hypertension, thrombocytosis, and dramatic responses to corticosteroid therapy that were observed in many cases were different from what is observed in classical FMF. CONCLUSIONS: We suggest that FMF, perhaps as a consequence of impaired control of inflammatory responses, predisposes to vasculitis with renal involvement.  (+info)

Influence of centriole behavior on the first spindle formation in zygotes of the brown alga Fucus distichus (Fucales, Phaeophyceae). (6/2012)

The influence of centrioles, derived from the sperm flagellar basal bodies, and the centrosomal material (MTOCs) on spindle formation in the brown alga Fucus distichus (oogamous) was studied by immunofluorescence microscopy using anti-centrin and anti-beta-tubulin antibodies. In contrast to a bipolar spindle, which is formed after normal fertilization, a multipolar spindle was formed in polyspermic zygote. The number of mitotic poles in polyspermic zygotes was double the number of sperm involved in fertilization. As an anti-centrin staining spot (centrioles) was located at these poles, the multipolar spindles in polyspermic zygotes were produced by the supplementary centrioles. When anucleate egg fragments were fertilized, chromosome condensation and mitosis did not occur in the sperm nucleus. Two anti-centrin staining spots could be detected, microtubules (MTs) radiated from nearby, but the mitotic spindle was never produced. When a single sperm fertilized multinucleate eggs (polygyny), abnormal spindles were also observed. In addition to two mitotic poles containing anti-centrin staining spots, extra mitotic poles without anti-centrin staining spots were also formed, and as a result multipolar spindles were formed. When karyogamy was blocked with colchicine, it became clear that the egg nucleus proceeded independently into mitosis accompanying chromosome condensation. A monoastral spindle could be frequently observed, and in rare cases a barrel-shaped spindle was formed. However, when a sperm nucleus was located near an egg nucleus, the two anti-centrin staining spots shifted to the egg nucleus from the sperm nucleus. In this case, a normal spindle was formed, the egg chromosomes arranged at the equator, and the associated MTs elongated from one pole of the egg spindle toward the sperm chromosomes which were scattered. From these results, it became clear that paternal centrioles derived from the sperm have a crucial role in spindle formation in the brown algae, such as they do during animal fertilization. However, paternal centrioles were not adequate for the functional centrosome during spindle formation. We speculated that centrosomal materials from the egg cytoplasm aggregate around the sperm centrioles and are needed for centrosomal activation.  (+info)

Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. (7/2012)

Normal development of nuclear transfer embryos is thought to be dependent on transferral of nuclei in G0 or G1 phases of the cell cycle. Therefore, we investigated the cell cycle characteristics of porcine fetal fibroblast cells cultured under a variety of cell cycle-arresting treatments. This was achieved by using flow cytometry to simultaneously measure cellular DNA and protein content, enabling the calculation of percentages of cells in G0, G1, S, and G2+M phases of the cell cycle. Cultures that were serum starved for 5 days contained higher (p < 0.05) percentages of G0+G1 (87.5 +/- 0. 7) and G0 cells alone (48.3 +/- 9.7) compared with rapidly cycling cultures (G0+G1: 74.1 +/- 3.0; G0: 2.8 +/- 1.2). Growth to confluency increased (p < 0.05) G0+G1 percentages (85.1 +/- 2.8) but did not increase G0 percentages (6.0 +/- 5.3) compared to those in cycling cultures. Separate assessment of small-, medium-, and large-sized cells showed that as the cell size decreased from large to small, percentages of cells in G0+G1 and G0 alone increased (p < 0.05). We found 95.2 +/- 0.3% and 72.2 +/- 12.0% of small serum-starved cells in G0+G1 and G0 alone, respectively. Cultures were also treated with cell cycle inhibitors. Treatment with dimethyl sulfoxide (1%) or colchicine (0.5 microM) increased percentages of cells in G0 (24.8 +/- 20.0) or G2+M (37.4 +/- 4.6), respectively. However, cells were only slightly responsive to mimosine treatment. A more complete understanding of the cell cycle of donor cells should lead to improvements in the efficiency of nuclear transfer procedures.  (+info)

Effect of the microtubule polymerizing agent taxol on contraction, Ca2+ transient and L-type Ca2+ current in rat ventricular myocytes. (8/2012)

1. Microtubules form part of the cytoskeleton. Their role in adult ventricular myocytes is not well understood although microtubule proliferation has previously been linked with reduced contractile function. 2. We investigated the effect of the anti-tumour drug taxol, a known microtubule polymerizing agent, on Ca2+ handling in adult rat ventricular myocytes. 3. Treatment of cells with taxol caused proliferation of microtubules. 4. In taxol-treated cells there was a reduction in the amplitude of contraction, no significant effect on the amplitude of L-type Ca2+ current, but a significant reduction in the amplitude of the Ca2+ transient. 5. Caffeine was used to release Ca2+ from the sarcoplasmic reticulum (SR). There was a significant reduction in the ratio of electrically stimulated : caffeine-induced Ca2+ transients in taxol-treated cells. This observation is consistent with the hypothesis that taxol reduces fractional SR Ca2+ release. 6. We suggest that the negative inotropic effect of taxol may, at least in part, be the result of reduced release of Ca2+ from the SR. Microtubules may be important regulators of Ca2+ handling in the heart.  (+info)