Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. (1/662)

We have identified a novel gene in a gene trap screen that encodes a protein related to the DnaJ co-chaperone in E. coli. The gene, named Mrj (mammalian relative of DnaJ) was expressed throughout development in both the embryo and placenta. Within the placenta, expression was particularly high in trophoblast giant cells but moderate levels were also observed in trophoblast cells of the chorion at embryonic day 8.5, and later in the labyrinth which arises from the attachment of the chorion to the allantois (a process called chorioallantoic fusion). Insertion of the ROSAbetageo gene trap vector into the Mrj gene created a null allele. Homozygous Mrj mutants died at mid-gestation due to a failure of chorioallantoic fusion at embryonic day 8.5, which precluded formation of the mature placenta. At embryonic day 8.5, the chorion in mutants was morphologically normal and expressed the cell adhesion molecule beta4 integrin that is known to be required for chorioallantoic fusion. However, expression of the chorionic trophoblast-specific transcription factor genes Err2 and Gcm1 was significantly reduced. The mutants showed no abnormal phenotypes in other trophoblast cell types or in the embryo proper. This study indicates a previously unsuspected role for chaperone proteins in placental development and represents the first genetic analysis of DnaJ-related protein function in higher eukaryotes. Based on a survey of EST databases representing different mouse tissues and embryonic stages, there are 40 or more DnaJ-related genes in mammals. In addition to Mrj, at least two of these genes are also expressed in the developing mouse placenta. The specificity of the developmental defect in Mrj mutants suggests that each of these genes may have unique tissue and cellular activities.  (+info)

Canine preprorelaxin: nucleic acid sequence and localization within the canine placenta. (2/662)

Employing uteroplacental tissue at Day 35 of gestation, we determined the nucleic acid sequence of canine preprorelaxin using reverse transcription- and rapid amplification of cDNA ends-polymerase chain reaction. Canine preprorelaxin cDNA consisted of 534 base pairs encoding a protein of 177 amino acids with a signal peptide of 25 amino acids (aa), a B domain of 35 aa, a C domain of 93 aa, and an A domain of 24 aa. The putative receptor binding region in the N'-terminal part of the canine relaxin B domain GRDYVR contained two substitutions from the classical motif (E-->D and L-->Y). Canine preprorelaxin shared highest homology with porcine and equine preprorelaxin. Northern analysis revealed a 1-kilobase transcript present in total RNA of canine uteroplacental tissue but not of kidney tissue. Uteroplacental tissue from two bitches each at Days 30 and 35 of gestation were studied by in situ hybridization to localize relaxin mRNA. Immunohistochemistry for relaxin, cytokeratin, vimentin, and von Willebrand factor was performed on uteroplacental tissue at Day 30 of gestation. The basal cell layer at the core of the chorionic villi was devoid of relaxin mRNA and immunoreactive relaxin or vimentin but was immunopositive for cytokeratin and identified as cytotrophoblast cells. The cell layer surrounding the chorionic villi displayed specific hybridization signals for relaxin mRNA and immunoreactivity for relaxin and cytokeratin but not for vimentin, and was identified as syncytiotrophoblast. Those areas of the chorioallantoic tissue with most intense relaxin immunoreactivity were highly vascularized as demonstrated by immunoreactive von Willebrand factor expressed on vascular endothelium. The uterine glands and nonplacental uterine areas of the canine zonary girdle placenta were devoid of relaxin mRNA and relaxin. We conclude that the syncytiotrophoblast is the source of relaxin in the canine placenta.  (+info)

Formation of mature egg envelope subunit proteins from their precursors (choriogenins) in the fish, Oryzias latipes: loss of partial C-terminal sequences of the choriogenins. (3/662)

The inner layer of egg envelope of the medaka, Oryzias latipes, comprises two major groups of glycoprotein subunits, ZI-1,2 and ZI-3. Their precursor proteins, choriogenin H (Chg H) and choriogenin L (Chg L), respectively, are synthesized in spawning female liver. In the present study, the primary structures of the precursors and the corresponding mature subunits were compared by peptide mapping and amino acid sequencing to find what difference in their molecular structures is relevant to the assembly of the soluble precursors into the insoluble inner layer. The primary structures of the solubilized subunits were mostly identical to those of the respective precursors, but they lacked C-terminal partial sequences that their precursors possessed, namely, ZI-1,2 subunit was shorter than Chg H by 34 amino acid residues and ZI-3 was shorter than Chg L by 27 residues. In addition, a consensus amino acid sequence, Arg-Lys-X-Arg, was found at the putative cleavage sites in the C-terminal region of the precursors. It is conjectured that the truncation of the precursor proteins is prerequisite for formation of mature chorion subunit proteins and their assembly into chorion.  (+info)

CD9 is expressed in extravillous trophoblasts in association with integrin alpha3 and integrin alpha5. (4/662)

The CD9 molecule is a 24-27 kDa cell surface glycoprotein, which may be related to Schwann cell migration and adhesion. In this study, we examined the expression of CD9 in human extravillous trophoblasts, which invade into the endometrium during implantation and placentation. CD9 was detected immunohistochemically on the extravillous trophoblasts in the cell columns of first trimester placentae, but not on villous trophoblasts. In the second and third trimester, CD9 was highly expressed on the extravillous trophoblasts in the basal plate of placentae, and in the chorion laeve in the fetal membrane of term placentae. The molecular mass of CD9 in the chorion laeve was shown to be 27 kDa by Western blotting. The mRNA of CD9 was also detected in the chorion laeve by reverse transcription-polymerase chain reaction (RT-PCR). Proteins were purified from chorion laeve by affinity chromatography with anti-integrin alpha3 and alpha5 monoclonal antibodies and Western blotting, revealed that CD9 was associated with both integrins. These findings indicate that CD9 is a differentiation-related molecule present in the extravillous trophoblasts. Since it is associated with integrin alpha5 which has been proposed to regulate trophoblast invasion, CD9 may be implicated in trophoblast invasion at the feto-maternal interface.  (+info)

Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. (5/662)

Members of the BMP family of signaling molecules display a high conservation of structure and function, and multiple BMPs are often coexpressed in a variety of tissues during development. Moreover, distinct BMP ligands are capable of activating common pathways. Here we describe the coexpression of two members of the 60A subfamily of BMPs, Bmp5 and Bmp7, at a number of different sites in the embryo from gastrulation onwards. Previous studies demonstrate that loss of either Bmp5 or Bmp7 has negligible effects on development, suggesting these molecules functionally compensate for each other at early stages of embryonic development. Here we show this is indeed the case. Thus we find that Bmp5;Bmp7 double mutants die at 10.5 dpc and display striking defects primarily affecting the tissues where these factors are coexpressed. The present analysis also uncovers novel roles for BMP signaling during the development of the allantois, heart, branchial arches, somites and forebrain. Bmp5 and Bmp7 do not appear to be involved in establishing pattern in these tissues, but are instead necessary for the proliferation and maintenance of specific cell populations. These findings are discussed with respect to potential mechanisms underlying cooperative signaling by multiple members of the TGF-beta superfamily.  (+info)

A monoclonal antibody against chorion proteins of the sea bass Dicentrarchus labrax (Linnaeus, 1758): studies of chorion precursors and applicability in immunoassays. (6/662)

The monoclonal antibody DLE7 was obtained against 44- to 50-kDa polypeptides solubilized from the vitelline envelope of the Mediterranean sea bass Dicentrarchus labrax. In Western blot analysis of chorion lysates it recognized cross-reactive bands at 44 kDa, 48 kDa, and 110 kDa. Previous affinity blotting with concanavalin-A showed that most of solubilized bands were glycosylated. Enzymatic deglycosylation of chorion proteins followed by Western blot analysis with DLE7 showed that the 48-kDa and 110-kDa antigens were differentially affected by endoglycosidase-F treatment. When DLE7 was employed in immunofluorescence analysis, isolated chorions and ovarian cryosections stained intensely. Positivity was also observed in liver cryosections of spawning females but not in liver of males and nonspawning females. To study the origin and delivery of chorion proteins, DLE7 was used in Western blot analysis of liver homogenates and blood serum of spawning females. Cross-reacting bands were detected in liver (90 kDa) and serum (180 kDa, 50 kDa). DLE7 was also used for the first time to set up an indirect ELISA assay to detect egg antigens in the blood of egg-producing females, raising the possibility of using DLE7 as a female-specific marker of spawning for sea bass.  (+info)

Tissue plasminogen activator and its receptor in the human amnion, chorion, and decidua at preterm and term. (7/662)

The plasminogen activator system consists of two proteins: tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA), which act upon their specific receptors to generate plasmin from plasminogen located on the cell surface. Plasmin then acts directly and indirectly to degrade the components of the extracellular matrix (ECM). This process is likely to be important in the normal turnover of the ECM of fetal membranes and in its premature weakening in preterm premature rupture of the fetal membranes. Quantitative Northern analysis and in situ hybridization have shown that the decidua expresses mRNA for tPA. However, the immunolocalized tPA protein was most strongly associated with the amnion and chorion, as was its receptor annexin II, suggesting that the amnion and chorion are the targets for decidual tPA. At term, decidual tPA expression was unaffected by labor, and the tPA receptor was elevated both before and after labor. At preterm, the converse was found: decidual tPA expression was significantly (p < 0. 05) up-regulated by labor, but the tPA receptor was not. The results suggest that the generation of plasmin at term would be controlled by an increased concentration of the tPA receptor in the amnion and chorion, whereas at preterm a pathological increase in plasmin would be generated by an overexpression of tPA, initiated by labor.  (+info)

Expression of matrix metalloproteinases during murine chorioallantoic placenta maturation. (8/662)

A large body of experimental evidence supports the participation of two groups of extracellular proteases, matrix metalloproteinases (MMPs), and plasminogen activators/plasmin, in tissue remodeling in physiological and pathological invasion. In the late mouse placenta, several tissue remodeling and cell invasion processes take place. Spongiotrophoblast migration into maternal decidua, as well as decidual extracellular matrix remodeling require the coordinated action of extracellular proteolytic enzymes. Via Northern and in situ hybridization, we have analyzed the spatio-temporal expression patterns of members of the MMP family (stromelysin-3, gelatinases A and B), as well as their inhibitors TIMP-1, -2 and -3 in late murine placenta (days 10.5 to 18.5 of gestation). Gelatinase activity in placental extracts was assessed by substrate zymography. Gelatinase A and stromelysin-3 were found to be prominently expressed in decidual tissue; shortly after midpregnancy, the decidual expression patterns of gelatinase A and stromelysin-3 became overlapping with each other, as well as with the expression domain of TIMP-2. On the other hand, gelatinase B transcripts were expressed only by trophoblast giant cells at day 10.5, and were downregulated at later stages. TIMP-1 and TIMP-3 transcripts were detected in decidual periphery at day 10.5, while later the expression was restricted to the endometrial stroma and spongiotrophoblasts, respectively. The areas of stromelysin-3 expression were the same (giant trophoblasts) or adjacent (decidua) to those where urokinase (uPA) transcripts were detected, suggesting a possible cooperation between these proteinases in placental remodeling. We generated mice doubly deficient for stromelysin-3 and uPA, and report here that these mice are viable and fertile. Furthermore, these animals do not manifest obvious placental abnormalities, thereby suggesting the existence of compensatory/redundant mechanisms involving other proteolytic enzymes. Our findings document the participation of MMPs and their inhibitors in the process of late murine placenta maturation, and warrant the characterization of other members of the MMP family, like membrane type-MMPs, in this process.  (+info)