Magnesium ion-induced changes in the binding mode of adenylates to chloroplast coupling factor 1. (1/4503)

The effect of Mg2+ on the binding of adenylates to isolated chloroplast coupling factor 1 (CF1) was studied using CD spectrometry and ultrafiltration. At adenylate concentrations smaller than 100 muM, one mole of CF1 binds three moles of ATP (or ADP) regardless of the presence of Mg2+. In the presence of Mg2+, the first two ATP's bind to CF1 independently with the same binding constant of 2.5 X 10(-1) muM-1, then the third ATP binds with a much higher affinity of 10 muM-1. In the absence of Mg2+, the first ATP binds to CF1 with a binding constant of 2.5 X 10(-1) muM-1 then the other two ATP's bind less easily with the same binding constant of 4.0 X 10(-2) muM-1. The binding mode of ADP to CF1 is quite similar to that of ATP. In the presence of Mg2+, the binding constants of the first two ADP's are both 7.6 X 10(-2) muM-1, that of the third ADP being 4.0 muM-1. In the absence of Mg2+, the binding constant of the first ADP is 7.6 X 10(-2) muM-1, the constants of the other two ADP's both being 4.0 X 10(-2) muM-1. AMP caused a negligible change in CD.  (+info)

Role of a novel photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii. (2/4503)

Intracellular carbonic anhydrases (CA) in aquatic photosynthetic organisms are involved in the CO2-concentrating mechanism (CCM), which helps to overcome CO2 limitation in the environment. In the green alga Chlamydomonas reinhardtii, this CCM is initiated and maintained by the pH gradient created across the chloroplast thylakoid membranes by photosystem (PS) II-mediated electron transport. We show here that photosynthesis is stimulated by a novel, intracellular alpha-CA bound to the chloroplast thylakoids. It is associated with PSII on the lumenal side of the thylakoid membranes. We demonstrate that PSII in association with this lumenal CA operates to provide an ample flux of CO2 for carboxylation.  (+info)

The localisation of 2-carboxy-D-arabinitol 1-phosphate and inhibition of Rubisco in leaves of Phaseolus vulgaris L. (3/4503)

A recent controversial report suggests that the nocturnal inhibitor of Rubisco, 2-carboxy-D-arabinitol 1-phosphate (CAIP), does not bind to Rubisco in vivo and therefore that CA1P has no physiological relevance to photosynthetic regulation. It is now proved that a direct rapid assay can be used to distinguish between Rubisco-bound and free CA1P, as postulated in the controversial report. Application of this direct assay demonstrates that CA1P is bound to Rubisco in vivo in dark-adapted leaves. Furthermore, CA1P is shown to be in the chloroplasts of mesophyll cells. Thus, CA1P does play a physiological role in the regulation of Rubisco.  (+info)

Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. (4/4503)

Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5, 000-10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field.  (+info)

EPR spectroscopy of VO2+-ATP bound to catalytic site 3 of chloroplast F1-ATPase from Chlamydomonas reveals changes in metal ligation resulting from mutations to the phosphate-binding loop threonine (betaT168). (5/4503)

Site-directed mutations were made to the phosphate-binding loop threonine in the beta-subunit of the chloroplast F1-ATPase in Chlamydomonas (betaT168). Rates of photophosphorylation and ATPase-driven proton translocation measured in coupled thylakoids purified from betaT168D, betaT168C, and betaT168L mutants had <10% of the wild type rates, as did rates of Mg2+-ATPase activity of purified chloroplast F1-ATPase (CF1). The EPR spectra of VO2+-ATP bound to Site 3 of CF1 from wild type and mutants showed that EPR species C, formed exclusively upon activation, was altered in CF1 from each mutant in both signal intensity and in 51V hyperfine parameters that depend on the equatorial VO2+ ligands. These data provide the first direct evidence that Site 3 is a catalytic site. No significant differences between wild type and mutants were observed in EPR species B, the predominant form of the latent enzyme. Thus, the phosphate-binding loop threonine is an equatorial metal ligand in the activated conformation but not in the latent conformation of Site 3. The metal-nucleotide conformation that gives rise to species B is consistent with the Mg2+-ADP complex that becomes entrapped in a catalytic site in a manner that regulates enzymatic activity. The lack of catalytic function of CF1 with entrapped Mg2+-ADP may be explained in part by the absence of the phosphate-binding loop threonine as a metal ligand.  (+info)

The chloroplast infA gene with a functional UUG initiation codon. (6/4503)

All chloroplast genes reported so far possess ATG start codons and sometimes GTGs as an exception. Sequence alignments suggested that the chloroplast infA gene encoding initiation factor 1 in the green alga Chlorella vulgaris has TTG as a putative initiation codon. This gene was shown to be transcribed by RT-PCR analysis. The infA mRNA was translated accurately from the UUG codon in a tobacco chloroplast in vitro translation system. Mutation of the UUG codon to AUG increased translation efficiency approximately 300-fold. These results indicate that the UUG is functional for accurate translation initiation of Chlorella infA mRNA but it is an inefficient initiation codon.  (+info)

Rapid purification of membrane extrinsic F1-domain of chloroplast ATP synthase in monodisperse form suitable for 3D-crystallization. (7/4503)

A new chromatographic procedure for purification of the membrane extrinsic F1-domain of chloroplast ATP synthase is presented. The purification is achieved by a single anion exchange chromatography step. Determination of the enzyme-bound nucleotides reveals only 1 mole of ADP per complex. The purified enzyme shows a latent Ca(2+)-dependent ATPase activity of 1.0 mumol.mg-1 min-1 and a Mg(2+)-dependent activity of 4.4 mumol.mg-1 .min-1. Both activities are increased up to 8-10-fold after dithiothreitol activation. Analysis of the purified F1-complex by SDS/PAGE, silver staining and immunoblotting revealed that the preparation is uncontaminated by fragmented subunits or ribulose-1,5-bisphosphate carboxylase/oxygenase. Gel filtration experiments indicate that the preparation is homogenous and monodisperse. In order to determine the solubility minimum of the purified F1-complex the isoelectric point of the preparation was calculated from pH mapping on ion exchange columns. In agreement with calculations based on the amino acid sequence, a slightly acidic pI of 5.7 was found. Using ammonium sulphate as a precipitant the purified CF1-complex could be crystallized by MicroBatch.  (+info)

Isolation of pigment-binding early light-inducible proteins from pea. (8/4503)

The early light-inducible proteins (ELIPs) in chloroplasts possess a high sequence homology with the chlorophyll a/b-binding proteins but differ from those proteins by their substoichiometric and transient appearance. In the present study ELIPs of pea were isolated by a two-step purification strategy: perfusion chromatography in combination with preparative isoelectric focussing. Two heterogeneous populations of ELIPs were obtained after chromatographic separation of solubilized thylakoid membranes using a weak anion exchange column. One of these populations contained ELIPs in a free form providing the first isolation of these proteins. To prove whether the isolated and pure forms of ELIP bind pigments, spectroscopic and chromatographic analysis were performed. Absorption spectra and TLC revealed the presence of chlorophyll a and lutein. Measurements of steady-state fluorescence emission spectra at 77 K exhibited a major peak at 674 nm typical for chlorophyll a bound to the protein matrix. The action spectrum of the fluorescence emission measured at 674 nm showed several peaks originating mainly from chlorophyll a. It is proposed that ELIPs are transient chlorophyll-binding proteins not involved in light-harvesting but functioning as scavengers for chlorophyll molecules during turnover of pigment-binding proteins.  (+info)