(33/4610) The gag domains required for avian retroviral RNA encapsidation determined by using two independent assays.

The Rous sarcoma virus (RSV) Gag precursor polyprotein is the only viral protein which is necessary for specific packaging of genomic RNA. To map domains within Gag which are important for packaging, we constructed a series of Gag mutations in conjunction with a protease (PR) active-site point mutation in a full-length viral construct. We found that deletion of either the matrix (MA), the capsid (CA), or the protease (PR) domain did not abrogate packaging, although the MA domain is likely to be required for proper assembly. A previously characterized deletion of both Cys-His motifs in RSV nucleocapsid protein (NC) reduced both the efficiency of particle release and specific RNA packaging by 6- to 10-fold, consistent with previous observations that the NC Cys-His motifs played a role in assembly and RNA packaging. Most strikingly, when amino acid changes at Arg 549 and 551 immediately downstream of the distal NC Cys-His box were made, RNA packaging was reduced by more than 25-fold with no defect in particle release, demonstrating the importance of this basic amino acid region in packaging. We also used the yeast three-hybrid system to study avian retroviral RNA-Gag interactions. Using this assay, we found that the interactions of the minimal packaging region (Mpsi) with Gag are of high affinity and specificity. Using a number of Mpsi and Gag mutants, we have found a clear correlation between a reporter gene activation in a yeast three-hybrid binding system and an in vivo packaging assay. Our results showed that the binding assay provides a rapid genetic assay of both RNA and protein components for specific encapsidation.  (+info)

(34/4610) Amino acid residues contributing to the substrate specificity of the influenza A virus neuraminidase.

Influenza A viruses possess two glycoprotein spikes on the virion surface: hemagglutinin (HA), which binds to oligosaccharides containing terminal sialic acid, and neuraminidase (NA), which removes terminal sialic acid from oligosaccharides. Hence, the interplay between these receptor-binding and receptor-destroying functions assumes major importance in viral replication. In contrast to the well-characterized role of HA in host range restriction of influenza viruses, there is only limited information on the role of NA substrate specificity in viral replication among different animal species. We therefore investigated the substrate specificities of NA for linkages between N-acetyl sialic acid and galactose (NeuAcalpha2-3Gal and NeuAcalpha2-6Gal) and for different molecular species of sialic acids (N-acetyl and N-glycolyl sialic acids) in influenza A viruses isolated from human, avian, and pig hosts. Substrate specificity assays showed that all viruses had similar specificities for NeuAcalpha2-3Gal, while the activities for NeuAcalpha2-6Gal ranged from marginal, as represented by avian and early N2 human viruses, to high (although only one-third the activity for NeuAcalpha2-3Gal), as represented by swine and more recent N2 human viruses. Using site-specific mutagenesis, we identified in the earliest human virus with a detectable increase in NeuAcalpha2-6Gal specificity a change at position 275 (from isoleucine to valine) that enhanced the specificity for this substrate. Valine at position 275 was maintained in all later human viruses as well as swine viruses. A similar examination of N-glycolylneuraminic acid (NeuGc) specificity showed that avian viruses and most human viruses had low to moderate activity for this substrate, with the exception of most human viruses isolated between 1967 and 1969, whose NeuGc specificity was as high as that of swine viruses. The amino acid at position 431 was found to determine the level of NeuGc specificity of NA: lysine conferred high NeuGc specificity, while proline, glutamine, and glutamic acid were associated with lower NeuGc specificity. Both residues 275 and 431 lie close to the enzymatic active site but are not directly involved in the reaction mechanism. This finding suggests that the adaptation of NA to different substrates occurs by a mechanism of amino acid substitutions that subtly alter the conformation of NA in and around the active site to facilitate the binding of different species of sialic acid.  (+info)

(35/4610) Carotenoids, sexual signals and immune function in barn swallows from Chernobyl.

Carotenoids have been hypothesized to facilitate immune function and act as free-radical scavengers, thereby minimizing the frequency of mutations. Populations of animals exposed to higher levels of free radicals are thus expected to demonstrate reduced sexual coloration if use of carotenoids for free-radical scavenging is traded against use for sexual signals. The intensity of carotenoid-based sexual coloration was compared among three populations of barn swallows Hirundo rustica differing in exposure to radioactive contamination. Lymphocyte and immunoglobulin concentrations were depressed, whereas the heterophil:lymphocyte ratio, an index of stress, was enhanced in Chernobyl swallows compared to controls. Spleen size was reduced in Chernobyl compared to that of two control populations. Sexual coloration varied significantly among populations, with the size of a secondary sexual character (the length of the outermost tail feathers) being positively related to coloration in the two control populations, but not in the Chernobyl population. Thus the positive covariation between coloration and sexual signalling disappeared in the population subject to intense radioactive contamination. These findings suggest that the reliable signalling function of secondary sexual characters breaks down under extreme environmental conditions, no longer providing reliable information about the health status of males.  (+info)

(36/4610) Hematology and serum chemistry of captive juvenile double-crested cormorants (Phalacrocorax auritus).

Hematologic and serum chemical values were obtained for double-crested cormorants (Phalacrocorax auritus) to improve clinical diagnosis of disease in this species. Blood samples were collected from 20 captive double-crested cormorants at 4 to 6 weeks of age. Hematocrit and leukocyte concentrations were determined in heparinized blood. Concentrations of sodium, potassium, chloride, bicarbonate, calcium, phosphorus, creatinine, glucose, uric acid, total protein, and albumin, and the activity levels of alkaline phosphatase, creatinine kinase, and aspartate aminotransferase were determined in serum. Total leukocyte concentrations in these double-crested cormorants were higher than the limited ranges reported for cormorants of other species, possibly due to subclinical infection with the liver trematode Amphimerus elongatus, and to differences in species and age.  (+info)

(37/4610) Nocardia nova causing pulmonary nocardiosis of black crakes (Limnocorax flavirostra).

Natural nocardial infection has been reported in many different species including mammals and fish, but reports in birds remain uncommon. Eight juvenile Black Crakes (Limnocoraxflavirostra) died unexpectedly at the Basle Zoo. Necropsy revealed disseminated white, firm nodules, 1-3 mm in diameter, throughout the lung parenchyma. Histologically, the lungs contained multiple, often confluent granulomas with central necrosis. Delicate, gram-positive, 0.5- to 1.0-microm-wide, branching, occasionally beaded, filamentous organisms were visible in necrotic centers. These organisms were acid fast when stained with Fite-Faraco. No histologic lesions were seen in other organs. Nocardia nova was isolated from liver, spleen, kidney, and lung. Granulomatous and necrotizing nocardial pneumonia with agonal septicemia was diagnosed, suggesting an aerogenous infection. To our knowledge, this is the first reported epizootic outbreak of nocardiosis in birds, which is additionally unusual because it was caused by N. nova.  (+info)

(38/4610) Genetic structure of natural populations of Escherichia coli in wild hosts on different continents.

Current knowledge of genotypic and phenotypic diversity in the species Escherichia coli is based almost entirely on strains recovered from humans or zoo animals. In this study, we analyzed a collection of 202 strains obtained from 81 mammalian species representing 39 families and 14 orders in Australia and the Americas, as well as several reference strains; we also included a strain from a reptile and 10 from different families of birds collected in Mexico. The strains were characterized genotypically by multilocus enzyme electrophoresis (MLEE) and phenotypically by patterns of sugar utilization, antibiotic resistance, and plasmid profile. MLEE analysis yielded an estimated genetic diversity (H) of 0.682 for 11 loci. The observed genetic diversity in this sample is the greatest yet reported for E. coli. However, this genetic diversity is not randomly distributed; geographic effects and host taxonomic group accounted for most of the genetic differentiation. The genetic relationship among the strains showed that they are more associated by origin and host order than is expected by chance. In a dendrogram, the ancestral cluster includes primarily strains from Australia and ECOR strains from groups B and C. The most differentiated E. coli in our analysis are strains from Mexican carnivores and strains from humans, including those in the ECOR group A. The kinds and numbers of sugars utilized by the strains varied by host taxonomic group and country of origin. Strains isolated from bats were found to exploit the greatest range of sugars, while those from primates utilized the fewest. Toxins are more frequent in strains from rodents from both continents than in any other taxonomic group. Strains from Mexican wild mammals were, on average, as resistant to antibiotics as strains from humans in cities. On average, the Australian strains presented a lower antibiotic resistance than the Mexican strains. However, strains recovered from hosts in cities carried significantly more plasmids than did strains isolated from wild mammals. Previous studies have shown that natural populations of E. coli harbor an extensive genetic diversity that is organized in a limited number of clones. However, knowledge of this worldwide bacterium has been limited. Here, we suggest that the strains from a wide range of wild hosts from different regions of the world are organized in an ecotypic structure where adaptation to the host plays an important role in the population structure.  (+info)

(39/4610) The noncollagenous domain 1 of type X collagen. A novel motif for trimer and higher order multimer formation without a triple helix.

In this study, we test the hypothesis that the carboxyl noncollagenous (NC1) domain of collagen X is sufficient to direct multimer formation without a triple helix. Two peptides containing the NC1 domain of avian collagen X have been synthesized using a bacterial expression system and their properties characterized. One peptide consists only of the NC1 domain, and the other is a chimeric molecule with a noncollagenous A domain of matrilin-1 fused to the N terminus of NC1. The NC1 peptide alone forms a 45-kDa trimer under native conditions, suggesting that NC1 contains all the information for trimerization without any triple helical residues. This trimeric association is highly thermostable without intermolecular disulfide bonds. This indicates that the NC1 domain contributes to the remarkable structural stability of collagen X. Chemical cross-linking of the NC1 trimer results in a series of varying sized multimers, the smallest of which is a trimer. Therefore the NC1 trimer is sufficient to form higher order multimers. The chimeric A-NC1 peptide forms a homotrimer by itself, and a series of heterotrimers with the NC1 peptide via the NC1 domain. Thus the NC1(X) domain directs multimer formation, even in a noncollagenous molecule.  (+info)

(40/4610) What determines the bending strength of compact bone?

The bending strength of a wide variety of bony types is shown to be nearly linearly proportional to Young's modulus of elasticity/100. A somewhat closer and more satisfactory fit is obtained if account is taken of the variation of yield strain with Young's modulus. This finding strongly suggests that bending strength is determined by the yield strain. The yield stress in tension, which might be expected to predict the bending strength, underestimates the true bending strength by approximately 40 %. This may be explained by two phenomena. (1) The post-yield deformation of the bone material allows a greater bending moment to be exerted after the yield point has been reached, thereby increasing the strength as calculated from beam formulae. (2) Loading in bending results in a much smaller proportion of the volume of the specimens being raised to high stresses than is the case in tension, and this reduces the likelihood of a weak part of the specimen being loaded to failure.  (+info)