(1/3384) Association of plasma fibrinogen concentration with vascular access failure in hemodialysis patients.

BACKGROUND: Elevated plasma fibrinogen is an important risk factor for coronary artery disease in the general population and patients with chronic renal failure. High plasma fibrinogen may trigger thrombus formation in arteriovenous fistulas. We performed a prospective, cohort study to evaluate the association of plasma fibrinogen concentration with vascular access failure in patients undergoing long-term haemodialysis. METHODS: Between September 1989 and October 1995, 144 patients underwent a vascular access operation. In March 1997, 102 patients (56 M, 46 F) who had been followed up for more than 18 months (median; 37 months, range; 18-102 months) were included in the study. The median age of the patients was 52 years (range; 19-78 years). In 35 patients, renal disease was secondary to diabetes mellitus. The type of vascular access was a polytetrafluoroethylene (PTFE) graft in 17 patients. Seventy-seven patients received recombinant human erythropoietin (r-HuEPO) therapy during the follow-up period. Plasma fibrinogen, albumin, total cholesterol, hematocrit, platelets and creatinine were measured at the time of operation. Vascular access failure was defined as the occurrence of complications requiring transluminal angioplasty, thrombolytic therapy or surgical repair. RESULTS: Thirty-eight patients had at least one vascular access failure and the incidence was 0.3 (range; 0-2.4) episodes per patient-year. The survival rate of vascular access was 78% (native fistula; 80%, PTFE graft; 71%) after 12 months and 70% (native fistula; 73%, PTFE graft; 51%) after 24 months. Older age, a PTFE graft, r-HuEPO therapy, higher hematocrit, lower albumin and higher fibrinogen levels were significantly associated with vascular access failure, whereas gender, diabetes mellitus, total cholesterol and platelet count were not. Plasma fibrinogen was inversely correlated with albumin (r=-0.38, P=0.001). The cumulative vascular access survival was significantly lower in patients with high plasma fibrinogen levels (> or = 460 mg/dl) compared with patients with low levels (< 460 mg/dl) (P=0.007). Independent risk factors for vascular access failure analysed by Cox's proportional hazards model were older age (RR; 1.36 by 10-year increment), higher fibrinogen level (RR; 1.20 by 100 mg/dl increment), PTFE graft (RR; 2.28) and r-HuEPO therapy (RR; 3.79). CONCLUSION: High plasma fibrinogen level is an independent risk factor for vascular access failure in haemodialysis patients.  (+info)

(2/3384) Transdermal photopolymerization for minimally invasive implantation.

Photopolymerizations are widely used in medicine to create polymer networks for use in applications such as bone restorations and coatings for artificial implants. These photopolymerizations occur by directly exposing materials to light in "open" environments such as the oral cavity or during invasive procedures such as surgery. We hypothesized that light, which penetrates tissue including skin, could cause a photopolymerization indirectly. Liquid materials then could be injected s.c. and solidified by exposing the exterior surface of the skin to light. To test this hypothesis, the penetration of UVA and visible light through skin was studied. Modeling predicted the feasibility of transdermal polymerization with only 2 min of light exposure required to photopolymerize an implant underneath human skin. To establish the validity of these modeling studies, transdermal photopolymerization first was applied to tissue engineering by using "injectable" cartilage as a model system. Polymer/chondrocyte constructs were injected s.c. and transdermally photopolymerized. Implants harvested at 2, 4, and 7 weeks demonstrated collagen and proteoglycan production and histology with tissue structure comparable to native neocartilage. To further examine this phenomenon and test the applicability of transdermal photopolymerization for drug release devices, albumin, a model protein, was released for 1 week from photopolymerized hydrogels. With further study, transdermal photpolymerization potentially could be used to create a variety of new, minimally invasive surgical procedures in applications ranging from plastic and orthopedic surgery to tissue engineering and drug delivery.  (+info)

(3/3384) Defensins impair phagocytic killing by neutrophils in biomaterial-related infection.

The implantation of foreign material carries a risk of infection which frequently is resistant to all treatment short of removing the implant. We have previously shown that these materials activate neutrophils by contact, leading to production of oxygen free radicals accompanied by release of granule products. Such activation further results in depletion of local host defenses, including the capacity of biomaterial-activated neutrophils to kill bacteria. Among the granule products released from neutrophils are small cationic antibacterial peptides (human neutrophil peptides [HNP]) known as defensins. Here we tested the hypothesis that defensins, released from activated neutrophils onto the surface of biomaterials, might play a role in the deactivation of subsequent neutrophil populations. Incubation of neutrophils with purified HNP resulted in a dose-related impairment of stimulus-induced oxygen radical production and of phagocytic killing. Furthermore, fresh neutrophils added to biomaterial-associated neutrophils exhibited impaired phagocytic killing. This impairment could be abrogated by antibody to HNP but not by an irrelevant antibody. Taken together, these observations support the idea that neutrophils activated at a material surface can create, by means of HNP release, an environment hostile to their microbicidal function and that of their infiltrating brethren.  (+info)

(4/3384) Cylindrical or T-shaped silicone rubber stents for microanastomosis--technical note.

The ostium of the recipient artery and the orifice of the donor artery must be clearly visualized for the establishment of microvascular anastomosis. Specially designed colored flexible cylindrical or T-shaped silicone rubber stents were made in various sizes (400 or 500 microns diameter and 5 mm length) and applied to bypass surgery in patients with occlusive cerebrovascular disease such as moyamoya disease and internal carotid artery occlusion. The colored flexible stents facilitated confirmation of the ostium of the artery even in patients with moyamoya disease and allowed precise microvascular anastomosis without problems caused by the stent.  (+info)

(5/3384) Effect of dialyser biocompatibility on recovery from acute renal failure after cadaver renal transplantation.

BACKGROUND: It has been reported that patients with acute renal failure (ARF) requiring haemodialysis show an improved recovery of renal function when the dialysis treatment is performed using a biocompatible membrane rather than a bioincompatible membrane. However, most recent published human trials have not been able to confirm these findings. METHOD: Over a 2-year period, we prospectively studied 53 patients with ARF after cadaver renal transplantation who required haemodialysis and randomized them into two treatment groups. One group underwent dialysis with a cuprophane membrane and the other group underwent haemodialysis with a more biocompatible membrane, polysulfone. All patients received an immunosuppressive regimen which included azathioprine, prednisone and cyclosporine. RESULTS: There was no difference by patient characteristics or immunosuppressive regimen before acute tubular necrosis (ATN) recovery. In both groups the number of haemodialysis sessions required prior to the recovery of renal function (6.57+/-2.79 vs 6.05+/-2.40), the number of oliguric days (16.25+/-5.14 vs 14.40+/-4.67) and the number of hospital days (33.38+/-12.85 vs 30.10+/-11.00), were not statistically different. There was also no difference in long-term allograft outcome. CONCLUSION: Our data demonstrate that the use of a more biocompatible membrane had no influence on the recovery from acute renal failure after renal transplantation.  (+info)

(6/3384) Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging.

EPR imaging has emerged as an important tool for noninvasive three-dimensional (3D) spatial mapping of free radicals in biological tissues. Spectral-spatial EPR imaging enables mapping of the spectral information at each spatial position, and, from the observed line width, the localized tissue oxygenation can be mapped. We report the development of EPR imaging instrumentation enabling 3D spatial and spectral-spatial EPR imaging of small animals. This instrumentation, along with the use of a biocompatible charcoal oximetry-probe suspension, enabled 3D spatial imaging of the gastrointestinal (GI) tract, along with mapping of oxygenation in living mice. By using these techniques, the oxygen tension was mapped at different levels of the GI tract from the stomach to the rectum. The results clearly show the presence of a marked oxygen gradient from the proximal to the distal GI tract, which decreases after respiratory arrest. This technique for in vivo mapping of oxygenation is a promising method, enabling the noninvasive imaging of oxygen within the normal GI tract. This method should be useful in determining the alterations in oxygenation associated with disease.  (+info)

(7/3384) Functional arteries grown in vitro.

A tissue engineering approach was developed to produce arbitrary lengths of vascular graft material from smooth muscle and endothelial cells that were derived from a biopsy of vascular tissue. Bovine vessels cultured under pulsatile conditions had rupture strengths greater than 2000 millimeters of mercury, suture retention strengths of up to 90 grams, and collagen contents of up to 50 percent. Cultured vessels also showed contractile responses to pharmacological agents and contained smooth muscle cells that displayed markers of differentiation such as calponin and myosin heavy chains. Tissue-engineered arteries were implanted in miniature swine, with patency documented up to 24 days by digital angiography.  (+info)

(8/3384) Thrombopoietin stimulates endothelial cell motility and neoangiogenesis by a platelet-activating factor-dependent mechanism.

In this study, we demonstrate that human umbilical cord vein-derived endothelial cells (HUVECs) expressed c-Mpl, the thrombopoietin (TPO) receptor, and that TPO activates HUVECs in vitro, as indicated by directional migration, synthesis of 1-alkyl-/1-acyl-platelet-activating factor (PAF) and interleukin-8 (IL-8), and phosphorylation of the signal transducers and activators of transcription (STAT) STAT1 and STAT5B. The observation that WEB 2170 and CV3988, 2 structurally unrelated PAF receptor antagonists, prevented the motility of HUVECs induced by TPO suggests a role of PAF as secondary mediator. Moreover, kinetic analysis of TPO-induced tyrosine phosphorylation of STAT demonstrated that STAT5B activation temporally correlated with the synthesis of PAF. PAF, in turn, induced a rapid tyrosine phosphorylation of STAT5B and PAF receptor blockade, by WEB 2170, preventing both TPO- and PAF-mediated STAT5B activation. The in vivo angiogenic effect of TPO, studied in a mouse model of Matrigel implantation, demonstrated that TPO induced a dose-dependent angiogenic response that required the presence of heparin. Moreover, the in vivo angiogenic effect of TPO was inhibited by the PAF receptor antagonist WEB 2170 but not by the anti-basic fibroblast growth factor neutralizing antibody. These results indicate that the effects of TPO are not restricted to cells of hematopoietic lineages, because TPO is able to activate endothelial cells and to induce an angiogenic response in which the recruitment of endothelial cells is mediated by the synthesis of PAF. Moreover, biochemical analysis supports the hypothesis that STAT5B may be involved in the signaling pathway leading to PAF-dependent angiogenesis.  (+info)