Central autonomic activation by intracisternal TRH analogue excites gastric splanchnic afferent neurons. (1/2230)

Intracisternal (ic) injection of thyrotropin-releasing hormone (TRH) or its stable analogue RX 77368 influences gastric function via stimulation of vagal muscarinic pathways. In rats, the increase in gastric mucosal blood flow evoked by a low ic dose of RX 77368 occurs via release of calcitonin gene-related peptide from capsaicin-sensitive afferent neurons, most probably of spinal origin. In this study, the effect of low ic doses of RX 77368 on afferent impulse activity in splanchnic single fibers was investigated. The cisterna magna of overnight-fasted, urethan-anesthetized Sprague-Dawley rats was acutely cannulated, and fine splanchnic nerve twigs containing at least one fiber responsive to mechanical probing of the stomach were isolated at a site immediately distal to the left suprarenal ganglion. Unit mechanoreceptive fields were encountered in all portions of the stomach, both superficially and in deeper layers. Splanchnic afferent unit impulse activity was recorded continuously during basal conditions and in response to consecutive ic injections of saline and RX 77368 (15-30 min later; 1.5 or 3 ng). Basal discharge rates ranged from 0 to 154 impulses/min (median = 10.2 impulses/min). A majority of splanchnic single units with ongoing activity increased their mean discharge rate by >/=20% after ic injection of RX 77368 at either 1.5 ng (6/10 units; median increase 63%) or 3 ng (19/24 units; median increase 175%). Five units lacking impulse activity in the 5-min before ic RX 77368 (3 ng) were also excited, with the onset of discharge occurring within 1.0-5.0 min postinjection. In units excited by ic RX 77368, peak discharge occurred 15.6 +/- 1.3 min after injection and was followed by a decline to stable activity levels +info)

Pharmacodynamic actions of (S)-2-[4,5-dihydro-5-propyl-2-(3H)-furylidene]-1,3-cyclopentanedione (oudenone). (2/2230)

The pharmacodynamic actions of (S)-2-[4,5-dihydro-5-propyl-2(3H)-furylidene]-1,3-cyclopentanedione (oudenone) were studied in both anesthetized animals and isolated organs. Oudenone (10--40 mg/kg i.v.) induced an initial rise in blood pressure followed by a prolonged hypotension in the anesthetized rats. In unanesthetized spontaneously hypertensive rats (SHR), oudenone (5--200 mg/kg p.o.) caused a dose-related decrease in the systolic blood pressure. The initial pressor effect was diminished by pretreatments with phentolamine, guanethidine, hexamethonium and was abolished in the pithed rats. In addition, intracisternal administrations of oudenone (100--600 mug/kg) showed a marked increase in blood pressure in the anesthetized rats, suggesting that the pressor effect may be due to centrally mediated actions. Oudenone, given intra-arterially into the femoral artery (400--800 mug/kg), caused a long-lasting vasodilation in anesthetized dogs. At a relatively high dose (40 mg/kg i.v.), oudenone antagonized all pressor responses to autonomic agents and central vagus nerve stimulation in anesthetized rats and dogs, however, oudenone showed no anti-cholinergic,-histaminergic, beta-adrenergic and adrenergic neuron blocking properties.  (+info)

Differences in heart rate variability between young and elderly normal men during graded head up tilt. (3/2230)

An autoregressive spectral analysis of heart rate variability (HRV) was used to analyze the differences in autonomic functions during graded head up tilt (HUT) between young and elderly men. After recording at the 0 degree position, the table was rotated to an upright position. The incline of the table was increased progressively to 15 degrees, 30 degrees and 60 degrees. The data obtained from seven young subjects (mean age of 20.0 years) and nine elderly subjects (mean age of 63.3 years) were analyzed. The high frequency components expressed by normalized units (HFnu) were used as the parasympathetic indicators, and HFnu decreased with tilt angle in both age groups. These results suggested that parasympathetic withdrawal have an important role in adaptation to an upright posture in both age groups. However, mean HF amplitude at the 0 degree position in elderly men was not significantly different from that of young men at 60 degrees tilt. A significant interaction effect (age group x tilt angle) was found for mean HF amplitude. The increase of the low frequency components expressed by normalized units (LFnu) and the LF-to-HF ratio in elderly subjects from 0 degree to 15 degrees seemed to be larger than that in young subjects. Sympathetic activities may be sensitive to lower levels of orthostatic stress in the elderly, and the elderly workers are easily affected by a change in workload. Therefore, keeping the workload lower and constant may be recommended to avoid excessive sympathetic activation among the elderly.  (+info)

Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. (4/2230)

BACKGROUND: The chemoreflexes are an important mechanism for regulation of both breathing and autonomic cardiovascular function. Abnormalities in chemoreflex mechanisms may be implicated in increased cardiovascular stress in patients with obstructive sleep apnea (OSA). We tested the hypothesis that chemoreflex function is altered in patients with OSA. METHODS AND RESULTS: We compared ventilatory, sympathetic, heart rate, and blood pressure responses to hypoxia, hypercapnia, and the cold pressor test in 16 untreated normotensive patients with OSA and 12 normal control subjects matched for age and body mass index. Baseline muscle sympathetic nerve activity (MSNA) was higher in the patients with OSA than in the control subjects (43+/-4 versus 21+/-3 bursts per minute; P<0. 001). During hypoxia, patients with OSA had greater increases in minute ventilation (5.8+/-0.8 versus 3.2+/-0.7 L/min; P=0.02), heart rate (10+/-1 versus 7+/-1 bpm; P=0.03), and mean arterial pressure (7+/-2 versus 0+/-2 mm Hg; P=0.001) than control subjects. Despite higher ventilation and blood pressure (both of which inhibit sympathetic activity) in OSA patients, the MSNA increase during hypoxia was similar in OSA patients and control subjects. When the sympathetic-inhibitory influence of breathing was eliminated by apnea during hypoxia, the increase in MSNA in OSA patients (106+/-20%) was greater than in control subjects (52+/-23%; P=0.04). Prolongation of R-R interval with apnea during hypoxia was also greater in OSA patients (24+/-6%) than in control subjects (7+/-5%) (P=0.04). Autonomic, ventilatory, and blood pressure responses to hypercapnia and the cold pressor test in OSA patients were not different from those observed in control subjects. CONCLUSIONS: OSA is associated with a selective potentiation of autonomic, hemodynamic, and ventilatory responses to peripheral chemoreceptor activation by hypoxia.  (+info)

Differential effects of defibrillation on systemic and cardiac sympathetic activity. (5/2230)

OBJECTIVE: To assess the effect of defibrillation shocks on cardiac and circulating catecholamines. DESIGN: Prospective examination of myocardial catecholamine balance during dc shock by simultaneous determination of arterial and coronary sinus plasma concentrations. Internal countershocks (10-34 J) were applied in 30 patients after initiation of ventricular fibrillation for a routine implantable cardioverter defibrillator test. Another 10 patients were externally cardioverted (50-360 J) for atrial fibrillation. MAIN OUTCOME MEASURES: Transcardiac noradrenaline, adrenaline, and lactate gradients immediately after the shock. RESULTS: After internal shock, arterial noradrenaline increased from a mean (SD) of 263 (128) pg/ml at baseline to 370 (148) pg/ml (p = 0.001), while coronary sinus noradrenaline fell from 448 (292) to 363 (216) pg/ml (p = 0.01), reflecting a shift from cardiac net release to net uptake. After external shock delivery, there was a similar increase in arterial noradrenaline, from 260 (112) to 459 (200) pg/ml (p = 0.03), while coronary sinus noradrenaline remained unchanged. Systemic adrenaline increased 11-fold after external shock (p = 0.01), outlasting the threefold rise following internal shock (p = 0.001). In both groups, a negative transmyocardial adrenaline gradient at baseline decreased further, indicating enhanced myocardial uptake. Cardiac lactate production occurred after ventricular fibrillation and internal shock, but not after external cardioversion, so the neurohumoral changes resulted from the defibrillation process and not from alterations in oxidative metabolism. CONCLUSIONS: A dc shock induces marked systemic sympathoadrenal and sympathoneuronal activation, but attenuates cardiac sympathetic activity. This might promote the transient myocardial depression observed after electrical discharge to the heart.  (+info)

Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. (6/2230)

The medial prefrontal cortex (mPFC) is highly activated by stress and modulates neuroendocrine and autonomic function. Dopaminergic inputs to mPFC facilitate coping ability and demonstrate considerable hemispheric functional lateralization. The present study investigated the potentially lateralized regulation of stress responses at the level of mPFC output neurons, using ibotenic acid lesions. Neuroendocrine function was assessed by plasma corticosterone increases in response to acute or repeated 20 min restraint stress. The primary index of autonomic activation was gastric ulcer development during a separate cold restraint stress. Restraint-induced defecation was also monitored. Plasma corticosterone levels were markedly lower in response to repeated versus acute restraint stress. In acutely restrained animals, right or bilateral, but not left mPFC lesions, decreased prestress corticosterone levels, whereas in repeatedly restrained rats, the same lesions significantly reduced the peak stress-induced corticosterone response. Stress ulcer development (after a single cold restraint stress) was greatly reduced by either right or bilateral mPFC lesions but was unaffected by left lesions. Restraint-induced defecation was elevated in animals with left mPFC lesions. Finally, a left-biased asymmetry in adrenal gland weights was observed across animals, which was unaffected by mPFC lesions. The results suggest that mPFC output neurons demonstrate an intrinsic right brain specialization in both neuroendocrine and autonomic activation. Such findings may be particularly relevant to clinical depression which is associated with both disturbances in stress regulatory systems and hemispheric imbalances in prefrontal function.  (+info)

Noninvasive exploration of cardiac autonomic neuropathy. Four reliable methods for diabetes? (7/2230)

OBJECTIVE: The purpose of this work was to assess relevant information that could be provided by various mathematical analyses of spontaneous blood pressure (BP) and heart rate (HR) variabilities in diabetic cardiovascular neuropathy. RESEARCH DESIGN AND METHODS: There were 10 healthy volunteers and 11 diabetic subjects included in the study. Diabetic patients were selected for nonsymptomatic orthostatic hypotension in an assessment of their cardiovascular autonomic impairment. Cardiac autonomic function was scored according to Ewing's methodology adapted to the use of a Finapres device. The spontaneous beat-to-beat BP and HR variabilities were then analyzed on a 1-h recording in supine subjects. The global variabilities were assessed by standard deviation, fractal dimension, and spectral power. The cardiac baroreflex function was estimated by cross-spectral sequences and Z analyses. RESULTS: In diabetic patients, Ewing's scores ranged from 1 to 4.5, confirming cardiovascular autonomic dysfunction. In these diabetic patients, global indices of variabilities were consistently lower than in healthy subjects. Furthermore, some of them (standard deviation and fractal dimension of HR, spectral power of systolic blood pressure and HR) were significantly correlated with the Ewing's scores. The Z methods and the spectral analysis found that the cardiac baroreflex was less effective in diabetic subjects. However, the baroreflex sensitivity could not be reliably assessed in all the patients. The sequence method pointed out a decreased number of baroreflex sequences in diabetic subjects that was correlated to the Ewing's score. CONCLUSIONS: Indices of HR spontaneous beat-to-beat variability are consistently related to the degree of cardiac autonomic dysfunction, according to Ewing's methodology. The Z method and spectral analysis confirmed that the cardiac baroreflex was impaired in diabetic patients. These methods might be clinically relevant for use in detecting incipient neuropathy in diabetic patients.  (+info)

Detection of autonomic sympathetic dysfunction in diabetic patients. A study using laser Doppler imaging. (8/2230)

OBJECTIVE: To study signs of the disturbed reflex autonomic sympathetic nerve function in type 1 and type 2 diabetic patients. RESEARCH DESIGN AND METHODS: Measurements were made on 15 type 1 (duration 13-32 years) and on 50 recently diagnosed type 2 diabetic patients (duration 3-4 years). The vasoconstrictor responses in the distal phalanx of the middle finger (locally heated to 40 degrees C) to the cooling of the contralateral arm were measured using Laser Doppler Imaging (LDI). A vasoconstriction index (VAC) was calculated taking age into account and was compared with reference values obtained in 80 control subjects. The diabetic patients were also studied with deep-breathing tests (i.e., the heart-rate variation expressed as the expiration-to-inspiration [E/I] ratio, a test of parasympathetic nerve function). RESULTS: The vasoconstrictor responses to indirect cooling (VAC) were significantly reduced in the fingers of the diabetic patients, both type 2 (0.77 +/- 0.02 V; P < 0.01) and type 1 (0.83 +/- 0.04 V; P < 0.001), compared with the healthy control subjects (0.65 +/- 0.01); the age-corrected VAC (VACz) was slightly more impaired in type 1 than in type 2 diabetic patients. The frequency of an abnormal VACz corresponded well to the frequency of an abnormal E/I ratio in type 1 diabetic patients (approximately 50%), whereas the frequency of an abnormal VACz was significantly higher than an abnormal E/I ratio among type 2 diabetic patients (11/50 vs. 4/50; P < 0.05). CONCLUSIONS: Both type 1 and type 2 diabetic patients have impaired cutaneous blood flow regulation. The VAC index seems to be a promising tool for detection of subclinical changes in autonomic sympathetic function.  (+info)